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When Frederic was a little lad he proved so brave and daring, 
His father thought he'd 'prentice him to some career seafaring. 
I was, alas! his nurs'rymaid, and so it fell to my lot 
To take and bind the promising boy apprentice to a pilot -
A life not bad for a hardy lad, though surely not a high lot, 
Though I'm a nurse, you might do worse than make your boy a pilot. 
I was a stupid nurs'rymaid, on breakers always steering, 
And I did not catch the word aright, through being hard of hearing; 
Mistaking my instructions, which within my brain did gyrate, 
I took and bound this promising boy apprentice to a pirate. 

The Pirates of Penzance, Gilbert and Sullivan, 1877 

Alas, this mistake by nurserymaid Ruth led to Frederic's long indenture as a 
pirate and, due to a slight complication involving twenty-first birthdays and 
leap years, nearly led to 63 extra years of apprenticeship. The mistake was 
quite natural, in a Gilbert-and-Sullivan sort of way; as Ruth later noted, "The 
two words were so much alike!". True, true; spoken language understanding 
is a difficult task, and it is remarkable that humans do as well at it as we do. 
The goal of automatic speech recognition (ASR) research is to address this 
problem computationally by building systems which map from an acoustic 
signal to a string of words. Automatic speech understanding (ASU) extends 
this goal to producing some sort of understanding of the sentence, rather than 
just the words. 

The general problem of automatic transcription of speech by any speaker 
in any environment is still far from solved. But recent years have seen ASR 
technology mature to the point where it is viable in certain limited domains. 
One major application area is in human-computer interaction. While many 
tasks are better solved with visual or pointing interfaces, speech has the po-
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tential to be a better interface than the keyboard for tasks where full natural 
language communication is useful, or for which keyboards are not appro-
priate. This includes hands-busy or eyes-busy applications, such as where 
the user has objects to manipulate or equipment to control. Another impor-
tant application area is telephony, where speech recognition is already used 
for example for entering digits, recognizing "yes" to accept collect calls, or 
call-routing ("Accounting, please", "Prof. Landauer, please"). Finally, ASR 
is being applied to dictation, i.e. transcription of extended monologue by 
a single specific speaker. Dictation is common in fields such as law and is 
also important as part of augmentative communication (interaction between 
computers and humans with some disability resulting in the inability to type, 
or the inability to speak). The blind Milton famously dictated Paradise Lost 
to his daughters, and Henry James dictated his later novels after a repetitive 
stress injury. 

Different applications of speech technology necessarily place different 
constraints on the problem and lead to different algorithms. We chose to fo-
cus this chapter on the fundamentals of one crucial area: Large-Vocabulary 
Continuous Speech Recognition (LVCSR), with a small section on acous-
tic issues in speech synthesis. Large-vocabulary generally means that the 
systems have a vocabulary of roughly 5,000 to 60,000 words. The term con-
tinuous means that the words are run together naturally; it contrasts with 
isolated-word speech recognition, in which each word must be preceded 
and followed by a pause. Furthermore, the algorithms we will discuss are 
generally speaker-independent; that is, they are able to recognize speech 
from people whose speech the system has never been exposed to before. 

The chapter begins with an overview of speech recognition architec-
ture, and then proceeds to introduce the HMM, the use of the Viterbi and 
A* algorithms for decoding, speech acoustics and features, and the use of 
Gaussians and MLPs to compute acoustic probabilities. Even relying on the 
previous three chapters, summarizing this much of the field in this chapter 
requires us to omit many crucial areas; the reader is encouraged to see the 
suggested readings at the end of the chapter for useful textbooks and articles. 
This chapter also includes a short section on the acoustic component of the 
speech synthesis algorithms discussed in Chapter 4. 
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7.1 SPEECH RECOGNITION ARCHITECTURE 

Previous chapters have introduced many of the core algorithms used in speech 
recognition. Chapter 4 introduced the notions of phone and syllable. Chap-
ter 5 introduced the noisy channel model, the use of the Bayes rule, and 
the probabilistic automaton. Chapter 6 introduced theN-gram language 
model and the perplexity metric. In this chapter we introduce the remaining 
components of a modem speech recognizer: the Hidden Markov Model 
(HMM), the idea of spectral features, the forward-backward algorithm 
for HMM training, and the Viterbi and stack decoding (also called A* de-
coding algorithms for solving the decoding problem: mapping from strings 
of phone probability vectors to strings of words. 

Let's begin by revisiting the noisy channel model that we saw in Chap-
ter 5. Speech recognition systems treat the acoustic input as if it were a 
'noisy' version of the source sentence. In order to 'decode' this noisy sen-
tence, we consider all possible sentences, and for each one we compute 
the probability of it generating the noisy sentence. We then chose the sen-
tence with the maximum probability. Figure 7.1 shows this noisy-channel 
metaphor. 

Figure 7.1 The noisy channel model applied to entire sentences (Figure 5.1 
showed its application to individual words). Modem speech recognizers work 
by searching through a huge space of potential 'source' sentences and choos-
ing the one which has the highest probability of generating the 'noisy' sen-
tence. To do this they must have models that express the probability of 
sentences being realized as certain strings of words (N-grams), models that 
express the probability of words being realized as certain strings of phones 
(HMMs) and models that express the probability of phones being realized as 
acoustic or spectral features (Gaussians/MLPs). 

Implementing the noisy-channel model as we have expressed it in Fig-
ure 7.1 requires solutions to two problems. First, in order to pick the sentence 
that best matches the noisy input we will need a complete metric for a "best 
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match". Because speech is so variable, an acoustic input sentence will never 
exactly match any model we have for this sentence. As we have suggested 
in previous chapters, we will use probability as our metric, and will show 
how to combine the various probabilistic estimators to get a complete esti-
mate for the probability of a noisy observation-sequence given a candidate 
sentence. Second, since the set of all English sentences is huge, we need 
an efficient algorithm that will not search through all possible sentences, but 
only ones that have a good chance of matching the input. This is the decod-
ing or search problem, and we will summarize two approaches: the Viterbi 
or dynamic programming decoder, and the stack or A* decoder. 

In the rest of this introduction we will introduce the probabilistic or 
Bayesian model for speech recognition (or more accurately re-introduce it, 
since we first used the model in our discussions of spelling and pronunciation 
in Chapter 5); we leave discussion of decoding/search for pages 242-249. 

The goal of the probabilistic noisy channel architecture for speech 
recognition can be summarized as follows: 

"What is the most likely sentence out of all sentences in the lan-
guage L given some acoustic input 0?" 

We can treat the acoustic input 0 as a sequence of individual 'symbols' 
or 'observations' (for example by slicing up the input every 10 milliseconds, 
and representing each slice by floating-point values of the energy or fre-
quencies of that slice). Each index then represents some time interval, and 
successive Oi indicate temporally consecutive slices of the input (note that 
capital letters will stand for sequences of symbols and lower-case letters for 
individual symbols): 

(7.1) 

Similarly, we will treat a sentence as if it were composed simply of a 
string of words: 

(7.2) 

Both of these are simplifying assumptions; for example dividing sen-
tences into words is sometimes too fine a division (we'd like to model facts 
about groups of words rather than individual words) and sometimes too gross 
a division (we'd like to talk about morphology). Usually in speech recogni-
tion a word is defined by orthography (after mapping every word to lower-
case): oak is treated as a different word than oaks, but the auxiliary can ("can 
you tell me ... ") is treated as the same word as the noun can ("i need a can 
of ... " ). Recent ASR research has begun to focus on building more so-
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phisticated models of ASR words incorporating the morphological insights 
of Chapter 3 and the part-of-speech information that we will study in Chap-
ter 8. 

The probabilistic implementation of our intuition above, then, can be 
expressed as follows: 

W = argmaxP(WIO) (7.3) 
WE£ 

Recall that the function argmaxxf(x) means 'the x such that f(x) is 
largest'. Equation (7.3) is guaranteed to give us the optimal sentence W; we 
now need to make the equation operational. That is, for a given sentence W 
and acoustic sequence 0 we need to compute P(WI 0). Recall that given any 
probability P(xly), we can use Bayes' rule to break it down as follows: 

P(xly) = (7.4) 

We saw in Chapter 5 that we can substitute (7.4) into (7.3) as follows: 

P( OIW)P(W) 
W = argmax (O) 

WE£ p 
(7.5) 

The probabilities on the right hand of (7.5) are for the most part easier 
to compute than P(WIO). For example, P(W), the prior probability of the 
word string itself is exactly what is estimated by then-gram language mod-
els of Chapter 6. And we will see below that P( OIW) turns out to be easy 
to estimate as well. But P( 0), the probability of the acoustic observation 
sequence, turns out to be harder to estimate. Luckily, we can ignore P( 0) 
just as we saw in Chapter 5. Why? Since we are maximizing over all pos-
sible sentences, we will be computing P( for each sentence in the 
language. But P( 0) doesn't change for each sentence! For each potential 
sentence we are still examining the same observations 0, which must have 
the same probability P(O). Thus: 

W = argmax = argmaxP(OIW)P(W) (7.6) 
WE£ p 0 WE£ 

To summarize, the most probable sentence W given some observation 
sequence 0 can be computing by taking the product of two probabilities for 
each sentence, and choosing the sentence for which this product is greatest. 
These two terms have names; P(W), the prior probability, is called the lan-
guage model. P( OIW), the observation likelihood, is called the acoustic 
model. 
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likelihood prior 

Key Concept #5. 
...----.. ,..-"-.. 

W = argmax P( OIW) P(W) (7.7) 
WE£ 

We have already seen in Chapter 6 how to compute the language model 
prior P(W) by using N-gram grammars. The rest of this chapter will show 
how to compute the acoustic model P( OIW), in two steps. First we will 
make the simplifying assumption that the input sequence is a sequence of 
phones F rather than a sequence of acoustic observations. Recall that we 
introduced the forward algorithm in Chapter 5, which was given 'obser-
vations' that were strings of phones, and produced the probability of these 
phone observations given a single word. We will show that these probabilis-
tic phone automata are really a special case of the Hidden Markov Model, 
and we will show how to extend these models to give the probability of a 
phone sequence given an entire sentence. 

One problem with the forward algorithm as we presented it was that 
in order to know which word was the most-likely word (the 'decoding prob-
lem'), we had to run the forward algorithm again for each word. This is 
clearly intractable for sentences; we can't possibly run the forward algo-
rithm separately for each possible sentence of English. We will thus intro-
duce two different algorithms which simultaneously compute the likelihood 
of an observation sequence given each sentence, and give us the most-likely 
sentence. These are the Viterbi and the A* decoding algorithms. 

Once we have solved the likelihood-computation and decoding prob-
lems for a simplified input consisting of strings of phones, we will show 
how the same algorithms can be applied to true acoustic input rather than 
pre-defined phones. This will involve a quick introduction to acoustic input 
and feature extraction, the process of deriving meaningful features from 
the input soundwave. Then we will introduce the two standard models for 
computing phone-probabilities from these features: Gaussian models, and 
neural net (multi-layer perceptrons) models. 

Finally, we will introduce the standard algorithm for training the Hid-
den Markov Models and the phone-probability estimators, the forward-
backward or Baum-Welch algorithm) (Baum, 1972), a special case of the 
the Expectation-Maximization or EM algorithm (Dempster et al., 1977). 

As a preview of the chapter, Figure 7.2 shows an outline of the compo-
nents of a speech recognition system. The figure shows a speech recognition 
system broken down into three stages. In the signal processing or feature 
extraction stage, the acoustic waveform is sliced up into frames (usually 
of 10, 15, or 20 milliseconds) which are transformed into spectral features 
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which give information about how much energy in the signal is at different 
frequencies. In the subword or phone recognition stage, we use statistical 
techniques like neural networks or Gaussian models to tentatively recognize 
individual speech sounds like p or b. For a neural network, the output of 
this stage is a vector of probabilities over phones for each frame (i.e. 'for 
this frame the probability of [p] is .8, the probability of [b] is .1, the proba-
bility of [f] is .02, etc'); for a Gaussian model the probabilities are slightly 
different. Finally, in the decoding stage, we take a dictionary of word pro-
nunciations and a language model (probabilistic grammar) and use a Viterbi 

239 

or A* decoder to find the sequence of words which has the highest proba- DECODER 

bility given the acoustic events. 

Speech 
Waveform 

Feature Extraction 
(Signal Processing) 

Neural Net Spectral 
Feature 
Vectors 

Phone Likelihood 
- .. Estimation (Gaussians 

or Neural Networks) 

Phone 
Likelihoods 
P(olq) 

a 1 o.J o.z , 
Decoding (Viterbi 

HMM Lexicon-.or Stack Decoder) 

g;.g..g 
Words 

ay070 
aa022 

004 
003 

ay080 n 
aa0l2 

004 m 
003 

need a 

Figure 7.2 Schematic architecture for a (simplified) speech recognizer 

7.2 OVERVIEW OF HIDDEN MARKOV MODELS 

In Chapter 5 we used weighted finite-state automata or Markov chains to 
model the pronunciation of words. The automata consisted of a sequence 
of states q = ( qoql qz ... qn), each corresponding to a phone, and a set of 
transition probabilities between states, a01 , a12 , a13 , encoding the probability 
of one phone following another. We represented the states as nodes, and 
the transition probabilities as edges between nodes; an edge existed between 
two nodes if there was a non-zero transition probability between the two 
nodes. We also saw that we could use the forward algorithm to compute the 
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likelihood of a sequence of observed phones o = ( 010203 ... Ot ). Figure 7.3 
shows an automaton for the word need with sample observation sequence of 
the kind we saw in Chapter 5. 

Word Model 

Observation 
Sequence 
(phone symbols) n 

I 

iy 
I 

d 

Figure 7.3 A simple weighted automaton or Markov chain pronunciation 
network for the word need, showing the transition probabilities, and a sample 
observation sequence. The transition probabilities axy between two states x 
and y are 1.0 unless otherwise specified. 

While we will see that these models figure importantly in speech recog-
nition, they simplify the problem in two ways. First, they assume that the 
input consists of a sequence of symbols! Obviously this is not true in the 
real world, where speech input consists essentially of small movements of 
air particles. In speech recognition, the input is an ambiguous, real-valued 
representation of the sliced-up input signal, called features or spectral fea-
tures. We will study the details of some of these features beginning on 
page 258; acoustic features represent such information as how much energy 
there is at different frequencies. The second simplifying assumption of the 
weighted automata of Chapter 5 was that the input symbols correspond ex-
actly to the states of the machine. Thus when seeing an input symbol [b], 
we knew that we could move into a state labeled [b ]. In a Hidden Markov 
Model, by contrast, we can't look at the input symbols and know which state 
to move to. The input symbols don't uniquely determine the next state. 1 

Recall that a weighted automaton or simple Markov model is specified 
by the set of states Q , the set of transition probabilities A, a defined start 
state and end state(s), and a set of observation likelihoods B. For weighted 

l Actually, as we mentioned in passing, by this second criterion some of the automata we 
saw in Chapter 5 were technically HMMs as well. This is because the first symbol in the 
input string [n iy] was compatible with the [n] states in the words need or an. Seeing the 
symbols [n], we didn't know which underlying state it was generated by, need-n or an-n. 
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automata, we defined the probabilities bi( Ot) as 1.0 ifthe state i matched the 
observation Ot and 0 if they didn't match. An HMM formally differs from a 
Markov model by adding two more requirements. First, it has a separate set 
of observation symbols 0, which is not drawn from the same alphabet as the 
state set Q. Second, the observation likelihood function B is not limited to 
the values 1.0 and 0; in an HMM the probability bi( Ot) can take on any value 
from 0 to 1.0. 

Word Model 

Observation 
Sequence 
(spectral feature 
vectors) 

Figure 7.4 An HMM pronunciation network for the word need, showing 
the transition probabilities, and a sample observation sequence. Note the ad-
dition of the output probabilities B. HMMs used in speech recognition usually 
use self-loops on the states to model variable phone durations. 

Figure 7.4 shows an HMM for the word need and a sample observa-
tion sequence. Note the differences from Figure 7.3. First, the observation 
sequences are now vectors of spectral features representing the speech sig-
nal. Next, note that we've also allowed one state to generate multiple copies 
of the same observation, by having a loop on the state. This loops allows 
HMMs to model the variable duration of phones; longer phones require more 
loops through the HMM. 

In summary, here are the parameters we need to define an HMM: 

• states: A set of states Q = q1 qz ... qN. 
• transition probabilities: A set of probabilities A= ao1aoz ... anl ... ann· 

Each aiJ represents the probability of transitioning from state i to state 
j. The set of these is the transition probability matrixZ, 

• observation likelihoods: A set of observation likelihoods B = bi(ot), 
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each expressing the probability of an observation Ot being generated 
from a state i. 

In our examples so far we have used two 'special' states (non-emitting 
states) as the start and end state; as we saw in Chapter 5 it is also possible to 
avoid the use of these states by specifying two more things: 

• initial distribution: An initial probability distribution over states, n, 
such that 1ti is the probability that the HMM will start in state i. Of 
course some states j may have 1t 1 = 0, meaning that they cannot be 
initial states. 

• accepting states: A set of legal accepting states. 

As was true for the weighted automata, the sequences of symbols that 
are input to the model (if we are thinking of it as recognizer) or which are 
produced by the model (if we are thinking of it as a generator) are generally 
called the observation sequence, referred to as 0 = ( o1 o2o3 ... or). 

7.3 THE VITERBI ALGORITHM REVISITED 

Chapter 5 showed how the forward algorithm could be used to compute the 
probability of an observation sequence given an automaton, and how the 
Viterbi algorithm can be used to find the most-likely path through the au-
tomaton, as well as the probability of the observation sequence given this 
most-likely path. In Chapter 5 the observation sequences consisted of a 
single word. But in continuous speech, the input consists of sequences of 
words, and we are not given the location of the word boundaries. Knowing 
where the word boundaries are massively simplifies the problem of pronun-
ciation; in Chapter 5 since we were sure that the pronunciation [ ni] came 
from one word, we only had 7 candidates to compare. But in actual speech 
we don't know where the word boundaries are. For example, try to decode 
the following sentence from Switchboard (don't peek ahead!): 

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih s en 1 ih] 

The answer is in the footnote. 2 The task is hard partly because of coar-
ticulation and fast speech (e.g. [d] for the first phone of just!). But mainly 
it's the lack of spaces indicating word boundaries that make the task difficult. 
The task of finding word boundaries in connected speech is called segmen-
tation and we will solve it by using the Viterbi algorithm just as we did for 
2 I just heard something about moving recently. 
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Chinese word-segmentation in Chapter 5; Recall that the algorithm for Chi-
nese word-segmentation relied on choosing the segmentation that resulted 
in the sequence of words with the highest frequency. For speech segmenta-
tion we use the more sophisticated N -gram language models introduced in 
Chapter 6. In the rest of this section we show how the Viterbi algorithm can 
be applied to the task of decoding and segmentation of a simple string of 
observations phones, using an n-gram language model. We will show how 
the algorithm is used to segment a very simple string of words. Here's the 
input and output we will work with: 

Input Output 
[aa n iy dh ax] I need the 

Figure 7.5 shows word models for I, need, the, and also, just to make 
things difficult, the word on. 

Word model for "the" 

.12 

Word model for "need" Word model for "I" 

Figure 7.5 Pronunciation networks for the words I, on, need, and the. All 
networks (especially the) are significantly simplified. 

Recall that the goal of the Viterbi algorithm is to find the best state se-
quence q = ( q1 qzq3 ... qt) given the set of observed phones o = ( 010203 ... Ot). 
A graphic illustration of the output of the dynamic programming algorithm is 
shown in Figure 7.6. Along they-axis are all the words in the lexicon; inside 
each word are its states. The x-axis is ordered by time, with one observed 
phone per time unit. 3 Each cell in the matrix will contain the probability of 
3 This x-axis component of the model is simplified in two major ways that we will show 
how to fix in the next section. First, the observations will not be phones but extracted spectral 
features, and second, each phone consists of not time unit observation but many observations 
(since phones can last for more than one phone). They-axis is also simplified in this example, 
since as we will see most ASR system use multiple 'subphone' units for each phone. 
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the most-likely sequence ending at that state. We can find the most-likely 
state sequence for the entire observation string by looking at the cell in the 
right-most column that has the highest-probability, and tracing back the se-
quence that produced it. 

d 

need ===7Li============ 
ax ___ : _____ j__ ,L _____ _ 
iy ___ i _____ j__ ---------

the ---j-----b ________ _ 
on n 

a a 
i 

ay i 
aa v------------------

aa n i dh ax ... 

Figure 7.6 An illustration of the results of the Viterbi algorithm used to 
find the most-likely phone sequence (and hence estimate the most-likely word 
sequence). 

More formally, we are searching for the best state sequence q* = ( q1 qz . .. qr), 
given an observation sequence o = ( 01 Oz ... or) and a model (a weighted au-
tomaton or 'state graph') A. Each cell viterbi[i, t]of the matrix contains the 
probability of the best path which accounts for the first t observations and 
ends in state i of the HMM. This is the most-probable path out of all possible 
sequences of states of length t - 1: 

viterbi[t,i] = max P(qlqz ... qt-l,qt = i,ol,oz ... otiA) (7.8) 
qt,qz, ... ,q,_t 

In order to compute viterbi[t,i], the Viterbi algorithm assumes the dy-
namic programming invariant. This is the simplifying (but incorrect) as-
sumption that if the ultimate best path for the entire observation sequence 
happens to go through a state qi, that this best path must include the best 
path up to and including state qi. This doesn't mean that the best path at any 
time t is the best path for the whole sequence. A path can look bad at the 
beginning but turn out to be the best path. As we will see later, the Viterbi 
assumption breaks down for certain kinds of grammars (including trigram 
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grammars) and so some recognizers have moved to another kind of decoder, 
the stack or A* decoder; more on that later. As we saw in our discussion 
of the minimum-edit-distance algorithm in Chapter 5, the reason for making 
the Viterbi assumption is that it allows us to break down the computation of 
the optimal path probability in a simple way; each of the best paths at time t 
is the best extension of each of the paths ending at time t - 1. In other words, 
the recurrence relation for the best path at time t ending in state j, viterbi[ t,j ], 
is the maximum of the possible extensions of every possible previous path 
from time t - 1 to time t: 

viterbi[t, j] = viterbi[t- 1, i] aiJ) bJ(Ot) (7.9) 
l 

The algorithm as we describe it in Figure 7.9 takes a sequence of ob-
servations, and a single probabilistic automaton, and returns the optimal path 
through the automaton. Since the algorithm requires a single automaton, we 
will need to combine the different probabilistic phone networks for the, I, 
need, and a into one automaton. In order to build this new automaton we 
will need to add arcs with probabilities between any two words: bigram 
probabilities. Figure 7.7 shows simple bigram probabilities computed from 
the combined Brown and Switchboard corpus. 

I need 0.0016 need need 0.000047 #Need 0.000018 
I the 0.00018 need the 0.012 #The 0.016 
I on 0.000047 need on 0.000047 #On 0.00077 
II 0.039 need I 0.000016 #I 0.079 
the need 0.00051 on need 0.000055 
the the 0.0099 on the 0.094 
the on 0.00022 on on 0.0031 
the I 0.00051 on I 0.00085 

Figure7.7 Bigram probabilities for the words the, on, need, and I following 
each other, and starting a sentence (i.e. following #). Computed from the 
combined Brown and Switchboard corpora with add-0.5 smoothing. 

Figure 7.8 shows the combined pronunciation networks for the 4 words 
together with a few of the new arcs with the bigram probabilities. For read-
ability of the diagram, most of the arcs aren't shown; the reader should imag-
ine that each probability in Figure 7.7 is inserted as an arc between every two 
words. 

The algorithm is given in Figure 5.19 in Chapter 5, and is repeated 
here for convenience as Figure 7.9. We see in Figure 7.9 that the Viterbi 
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Figure 7.8 Single automaton made from the words I, need, on, and the. The 
arcs between words have probabilities computed from Figure 7. 7. For lack of 
space the figure only shows a few of the between-word arcs. 

algorithm sets up a probability matrix, with one column for each time index 
t and one row for each state in the state graph. The algorithm first creates 
T + 2 columns; Figure 7.9 shows the first 6 columns. The first column is 
an initial pseudo-observation, the next corresponds to the first observation 
phone [aa], and so on. We begin in the first column by setting the probability 
of the start state to 1.0, and the other probabilities to 0; the reader should 
find this in Figure 7.10. Cells with probability 0 are simply left blank for 
readability. For each column of the matrix, i.e. for each time index t, each 
cell viterbi[t,j], will contain the probability of the most likely path to end in 
that cell. We will calculate this probability recursively, by maximizing over 
the probability of coming from all possible preceding states. Then we move 
to the next state; for each ofthe i states viterbi[O,i] in column 0, we compute 
the probability of moving into each of the j states viterbi[l,j] in column 1, 
according to the recurrence relation in (7.9). In the column for the input aa, 
only two cells have non-zero entries, since b1 (aa) is zero for every other 
state except the two states labeled aa. The value of viterbi( l,aa) of the word 
I is the product of the transition probability from# to I and the probability of 
I being pronounced with the vowel aa. 

Notice that if we look at the column for the observation n, that the word 
on is currently the 'most-probable' word. But since there is no word or set of 
words in this lexicon which is pronounced i dh ax, the path starting with on 
is a dead end, i.e. this hypothesis can never be extended to cover the whole 
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function VITERBI(observations of len T,state-graph) returns best-path 

num-states +---NUM- oF -STATES(state-graph) 
Create a path probability matrix viterbi[num-states+2,T +2} 
viterbi[O,O} +--- 1.0 
for each time step t from 0 to T do 

for each states from 0 to num-states do 
for each transitions' from s specified by state-graph 

new-score+---viterbi[s, t] * a[s,s'] * b5,(0t) 
if ((viterbi[s' ,t+ 1] = 0) 11 (new-score > viterbi[s', t+ 1])) 

then 
viterbi[s', t+ 1] +---new-score 
back-pointer[s', t+ 1] +--- s 

Backtrace from highest probability state in the final column of viterbi[] and 
return path 

Figure 7.9 Viterbi algorithm for finding optimal sequence of states in con-
tinuous speech recognition, simplified by using phones as inputs (duplicate of 
Figure 5.19). Given an observation sequence of phones and a weighted au-
tomaton (state graph), the algorithm returns the path through the automaton 
which has minimum probability and accepts the observation sequence. a[s,s'] 
is the transition probability from current state s to next state s' and b s' ( o1) is 
the observation likelihood of s' given o1• 

utterance. 
By the time we see the observation iy, there are two competing paths: 

I need and I the; I need is currently more likely. When we get to the obser-
vation dh, we could have arrived from either the iy of need or the iy of the. 
The probability of the max of these two paths, in this case the path through I 
need, will go into the cell for dh. 

Finally, the probability for the best path will appear in the final ax 
column. In this example, only one cell is non-zero in this column; the ax 
state of the word the (a real example wouldn't be this simple; many other 
cells would be non-zero). 

If the sentence had actually ended here, we would now need to back-
trace to find the path that gave us this probability. We can't just pick the 
highest probability state for each state column. Why not? Because the most 
likely path early on is not necessarily the most likely path for the whole sen-
tence. Recall that the most likely path after seeing n was the word on. But 
the most likely path for the whole sentence is I need the. Thus we had to 
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d : : : : : 
need iy :-------+-------

n I I/ =.0000026 I I 1 

the 
:; 

---,------ -ooi6*roils*.asfi-:-------,------- --------
n I = .000000023 I I I 

dh ---1----- 1--------
1

--------1 ::92 _____ _ 

a: 
1/ = .00077 I I I I 

on 

:: __ +-------+--------i-------+-------
I I I I 

start 1.0 'I 

# . IY db a a n ax 

Figure 7.10 The entries in the individual state columns for the Viterbi al-
gorithm. Each cell keeps the probability of the best path so far and a pointer 
to the previous cell along that path. Backtracing from the successful last word 
(the), we can reconstruct the word sequence I need the. 

rely in Figure 7.10 on the 'Hansel and Gretel' method (or the 'Jason and 
the Minotaur' method if you like your metaphors more classical): whenever 
we moved into a cell, we kept pointers back to the cell we came from. The 
reader should convince themselves that the Viterbi algorithm has simultane-
ously solved the segmentation and decoding problems. 

The presentation of the Viterbi algorithm in this section has been sim-
plified; actual implementations of Viterbi decoding are more complex in 
three key ways that we have mentioned already. First, in an actual HMM 
for speech recognition, the input would not be phones. Instead, the input 
is a feature vector of spectral and acoustic features. Thus the observation 
likelihood probabilities bi(t) of an observation Ot given a state i will not 
simply take on the values 0 or 1, but will be more fine-grained probability 
estimates, computed via mixtures of Gaussian probability estimators or neu-
ral nets. The next section will show how these probabilities are computed. 

Second, the HMM states in most speech recognition systems are not 
simple phones but rather sub phones. In these systems each phone is divided 
into 3 states: the beginning, middle and final portions of the phone. Dividing 
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up a phone in this way captures the intuition that the significant changes in 
the acoustic input happen at a finer granularity than the phone; for exam-
ple the closure and release of a stop consonant. Furthermore, many systems 
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use a separate instance of each of these subphones for each triphone con- TRIPHONE 

text (Schwartz et al., 1985; Deng et al., 1990). Thus instead of around 60 
phone units, there could be as many as 603 context-dependent triphones. In 
practice, many possible sequences of phones never occur or are very rare, 
so systems create a much smaller number of trip hones models by clustering 
the possible triphones (Young and Woodland, 1994). Figure 7.11 shows an 
example of the complete phone model for the triphone b(ax,aw). 

Figure 7.11 An example of the context-dependent triphone b(ax,aw) (the 
phone [b] preceded by a [ax] and followed by a [aw], as in the beginning of 
about, showing its left, middle, and right subphones. 

Finally, in practice in large-vocabulary recognition it is too expensive 
to consider all possible words when the algorithm is extending paths from 
one state-column to the next. Instead, low-probability paths are pruned at 
each time step and not extended to the next state column. This is usually im-
plemented via beam search: for each state column (time step), the algorithm 
maintains a short list of high-probability words whose path probabilities are 
within some percentage (beam width) of the most probable word path. Only 
transitions from these words are extended when moving to the next time step. 
Since the words are ranked by the probability of the path so far, which words 
are within the beam (active) will change from time step to time step. Making 
this beam search approximation allows a significant speed-up at the cost of 
a degradation to the decoding performance. This beam search strategy was 
first implemented by Lowerre (1968). Because in practice most implemen-
tations of Viterbi use beam search, some of the literature uses the term beam 
search or time-synchronous beam search instead of Viterbi. 

BEAM 
SEARCH 

BEAM WIDTH 
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7.4 ADVANCED METHODS FOR DECODING 

There are two main limitations of the Viterbi decoder. First, the Viterbi 
decoder does not actually compute the sequence of words which is most 
probable given the input acoustics. Instead, it computes an approximation to 
this: the sequence of states (i.e. phones or subphones) which is most proba-
ble given the input. This difference may not always be important; the most 
probable sequence of phones may very well correspond exactly to the most 
probable sequence of words. But sometimes the most probable sequence 
of phones does not correspond to the most probable word sequence. For 
example consider a speech recognition system whose lexicon has multiple 
pronunciations for each word. Suppose the correct word sequence includes 
a word with very many pronunciations. Since the probabilities leaving the 
start arc of each word must sum to 1.0, each of these pronunciation-paths 
through this multiple-pronunciation HMM word model will have a smaller 
probability than the path through a word with only a single pronunciation 
path. Thus because the Viterbi decoder can only follow one of these pronun-
ciation paths, it may ignore this word in favor of an incorrect word with only 
one pronunciation path. 

A second problem with the Viterbi decoder is that it cannot be used 
with all possible language models. In fact, the Viterbi algorithm as we have 
defined it cannot take complete advantage of any language model more com-
plex than a bigram grammar. This is because of the fact mentioned early that 
a trigram grammar, for example, violates the dynamic programming in-
variant that makes dynamic programming algorithms possible. Recall that 
this invariant is the simplifying (but incorrect) assumption that if the ultimate 
best path for the entire observation sequence happens to go through a state 
qi, that this best path must include the best path up to and including state 
qi. Since a trigram grammar allows the probability of a word to be based on 
the two previous words, it is possible that the best trigram-probability path 
for the sentence may go through a word but not include the best path to that 
word. Such a situation could occur if a particular word Wx has a high tri-
gram probability given wy, Wz, but that conversely the best path to Wy didn't 
include Wz (i.e. P(wylwq, Wz) was low for all q). 

There are two classes of solutions to these problems with Viterbi de-
coding. One class involves modifying the Viterbi decoder to return mul-
tiple potential utterances and then using other high-level language model 
or pronunciation-modeling algorithms to re-rank these multiple outputs. In 
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general this kind of multiple-pass decoding allows a computationally effi-
cient, but perhaps unsophisticated, language model like a bigram to perform 
a rough first decoding pass, allowing more sophisticated but slower decoding 
algorithms to run on a reduced search space. 

For example, Schwartz and Chow (1990) give a Viterbi-like algorithm 
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which returns theN-best sentences (word sequences) for a given speech in- N-sEsT 

put. Suppose for example a bigram grammar is used with this N-best-Viterbi 
to return the 10,000 most highly-probable sentences, each with their likeli-
hood score. A trigram-grammar can then be used to assign a new language-
model prior probability to each of these sentences. These priors can be com-
bined with the acoustic likelihood of each sentence to generate a posterior 
probability for each sentence. Sentences can then be rescored using this REscoRED 

more sophisticated probability.Figure 7.12 shows an intuition for this algo-
rithm. 

mput ..... ,· .. 
If music be 

food of love ... 

Simple 
Knowledge 
Source 

Smarter 
Knowledge 
Source 

.. '::,. .,) ... v ·v· 1-Best Utterance 
?AIIcewasbegmn1ngtoget EJ 

N-Best • • •.. J· ... If mustc be the Decoder ?lfmuSicbefhefoodoflove Resconng ..... ,./ foodoflove 
?If mus1c be the foot of dove r 

'--------' 

Figure 7.12 The use of N-best decoding as part of a two-stage decoding 
model. Efficient but unsophisticated knowledge sources are used to return the 
N-best utterances. This significantly reduces the search space for the second 
pass models, which are thus free to be very sophisticated but slow. 

An augmentation of N -best, still part of this first class of extensions to 
Viterbi, is to return, not a list of sentences, but a word lattice. A word lattice 
is a directed graph of words and links between them which can compactly 
encode a large number of possible sentences. Each word in the lattice is aug-
mented with its observation likelihood, so that any particular path through 
the lattice can then be combined with the prior probability derived from a 
more sophisticated language model. For example Murveit et al. (1993) de-
scribe an algorithm used in the SRI recognizer Decipher which uses a bigram 
grammar in a rough first pass, producing a word lattice which is then refined 
by a more sophisticated language model. 

The second solution to the problems with Viterbi decoding is to employ 

WORD 
LATIICE 
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a completely different decoding algorithm. The most common alternative 
algorithm is the stack decoder, also called the A* decoder (Jelinek, 1969; 
Jelinek et al., 1975). We will describe the algorithm in terms of the A* 
search used in the artificial intelligence literature, although the development 
of stack decoding actually came from the communications theory literature 
and the link with AI best-first search was noticed only later (Jelinek, 1976). 

A* Decoding 

To see how the A* decoding method works, we need to revisit the Viterbi al-
gorithm. Recall that the Viterbi algorithm computed an approximation of the 
forward algorithm. Viterbi computes the observation likelihood of the single 
best (MAX) path through the HMM, while the forward algorithm computes 
the observation likelihood of the total (SUM) of all the paths through the 
HMM. But we accepted this approximation because Viterbi computed this 
likelihood and searched for the optimal path simultaneously. The A* decod-
ing algorithm, on the other hand, will rely on the complete forward algorithm 
rather than an approximation. This will ensure that we compute the correct 
observation likelihood. Furthermore, the A* decoding algorithm allows us 
to use any arbitrary language model. 

The A* decoding algorithm is a kind of best-first search of the lattice or 
tree which implicitly defines the sequence of allowable words in a language. 
Consider the tree in Figure 7.13, rooted in the START node on the left. Each 
leaf of this tree defines one sentence of the language; the one formed by 
concatenating all the words along the path from START to the leaf. We 
don't represent this tree explicitly, but the stack decoding algorithm uses the 
tree implicitly as a way to structure the decoding search. 

The algorithm performs a search from the root of the tree toward the 
leaves, looking for the highest probability path, and hence the highest prob-
ability sentence. As we proceed from root toward the leaves, each branch 
leaving a given word node represent a word which may follow the current 
word. Each of these branches has a probability, which expresses the condi-
tional probability of this next word given the part of the sentence we've seen 
so far. In addition, we will use the forward algorithm to assign each word a 
likelihood of producing some part of the observed acoustic data. The A* de-
coder must thus find the path (word sequence) from the root to a leaf which 
has the highest probability, where a path probability is defined as the prod-
uct of its language model probability (prior) and its acoustic match to the 
data (likelihood). It does this by keeping a priority queue of partial paths 
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my 

not 

want 

can't lives 

underwriter 

typically/ 

xceptional 

Figure 7.13 A visual representation of the implicit lattice of allowable 
word sequences which defines a language. The set of sentences of a language 
is far too large to represent explicitly, but the lattice gives a metaphor for ex-
ploring substrings of these sentences. 

(i.e. prefixes of sentences, each annotated with a score). In a priority queue 
each element has a score, and the pop operation returns the element with 
the highest score. The A* decoding algorithm iteratively chooses the best 
prefix-so-far, computes all the possible next words for that prefix, and adds 
these extended sentences to the queue. The Figure 7.14 shows the complete 
algorithm. 

Let's consider a stylized example of a A* decoder working on a wave-
form for which the correct transcription is If music be the food of love. Fig-
ure 7.15 shows the search space after the decoder has examined paths of 
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length one from the root. A fast match is used to select the likely next FASTMATCH 

words. A fast match is one of a class of heuristics designed to efficiently 
winnow down the number of possible following words, often by comput-
ing some approximation to the forward probability (see below for further 
discussion of fast matching). 

At this point in our example, we've done the fast match, selected a sub-
set of the possible next words, and assigned each of them a score. The word 
Alice has the highest score. We haven't yet said exactly how the scoring 
works, although it will involve as a component the probability of the hypoth-
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function STACK-DECODING() returns min-distance 

Initialize the priority queue with a null sentence. 
Pop the best (highest score) sentence s off the queue. 
If (s is marked end-of-sentence (EOS) ) outputs and terminate. 
Get list of candidate next words by doing fast matches. 
For each candidate next word w: 

Create a new candidate sentences+ w. 
Use forward algorithm to compute acoustic likelihood L of s + w 
Compute language model probability P of extended sentences+ w 
Compute 'score' fors+ w (a function of L, P, and???) 
if (end-of-sentence) set EOS flag fors+ w. 
Insert s + w into the queue together with its score and EOS flag 

Figure 7.14 The A* decoding algorithm (modified from Paul (1991) and 
Jelinek (1997)). The evaluation function that is used to compute the score for 
a sentence is not completely defined here; possibly evaluation functions are 
discussed below. 

esized sentence given the acoustic input P(WIA), which itself is composed 
ofthe language model probability P(W) and the acoustic likelihood P(AIW). 

Figure 7.16 show the next stage in the search. We have expanded the 
Alice node. This means that the Alice node is no longer on the queue, but its 
children are. Note that now the node labeled if actually has a higher score 
than any of the children of Alice. 

Figure 7.17 shows the state of the search after expanding the if node, 
removing it, and adding if music, if muscle, and if messy on to the queue. 

We've implied that the scoring criterion for a hypothesis is related to its 
probability. Indeed it might seem that the score for a string of words wi given 
an acoustic string y{ should be the product of the prior and the likelihood: 

P(y{lwi)P(wi) 
Alas, the score cannot be this probability because the probability will 

be much smaller for a longer path than a shorter one. This is due to a simple 
fact about probabilities and substrings; any prefix of a string must have a 
higher probability than the string itself (e.g. P(START the ... ) will be greater 
than P(START the book)). Thus if we used probability as the score, the A* 
decoding algorithm would get stuck on the single-word hypotheses. 

Instead, we use what is called the A* evaluation function (Nilsson, 
1980; Pearl, 1984) called f*(p), given a partial path p: 
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P( "if' I START) 

P(acoustic I "if' ) = 
forward probability 

Figure 7.15 The beginning of the search for the sentence If music be the 
food of love. At this early stage Alice is the most likely hypothesis (it has a 
higher score than the other hypotheses). 

P( "if" ISTART) 

P(acousticsl "if' ) = 
forward probability 

Figure 7.16 The next step of the search for the sentence If music be the 
food of love. We've now expanded the A lice node, and added three extensions 
which have a relatively high score (was, wants, and walls). Note that now the 
node with the highest score is START if, which is not along the START A lice 
path at all! 

f*(p) = g(p) +h*(p) 
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Figure 7.17 We've now expanded the if node. The hypothesis START if 
music currently has the highest score. 

f* (p) is the estimated score of the best complete path (complete sen-
tence) which starts with the partial path p. In other words, it is an estimate of 
how well this path would do if we let it continue through the sentence. The 
A* algorithm builds this estimate from two components: 

• g(p) is the score from the beginning of utterance to the end of the par-
tial path p. This g function can be nicely estimated by the probability 
of p given the acoustics so far (i.e. as P(AIW)P(W) for the word string 
W constituting p ). 

• h* (p) is an estimate of the best scoring extension of the partial path to 
the end of the utterance. 

Coming up with a good estimate of h* is an unsolved and interesting 
problem. One approach is to choose as h* an estimate which correlates with 
the number of words remaining in the sentence (Paul, 1991); see Jelinek 
(1997) for further discussion. 

We mentioned above that both the A* and various other two-stage de-
coding algorithms require the use of a fast match for quickly finding which 
words in the lexicon are likely candidates for matching some portion of the 
acoustic input. Many fast match algorithms are based on the use of a tree-

TREE-
sTRUCTURED structured lexicon, which stores the pronunciations of all the words in such 
LEXICON 

a way that the computation of the forward probability can be shared for 
words which start with the same sequence of phones. The tree-structured 
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lexicon was first suggested by Klovstad and Mondshein (1975); fast match 
algorithms which make use of it include Gupta et al. (1988), Bahl et al. 
(1992) in the context of A* decoding, and Ney et al. (1992) and Nguyen and 
Schwartz (1999) in the context of Viterbi decoding. Figure 7.18 shows an 
example of a tree-structured lexicon from the Sphinx-II recognizer (Ravis-
hankar, 1996). Each tree root represents the first phone of all words begin-
ning with that context dependent phone (phone context may or may not be 
preserved across word boundaries), and each leaf is associated with a word. 

ABOUND 

BAKERY 

Figure 7.18 A tree-structured lexicon from the Sphinx-II recognizer (af-
ter Ravishankar (1996)). Each node corresponds to a particular triphone in a 
slightly modified version of the ARPAbet; thus EY(B,KD) means the phone 
EY preceded by a B and followed by the closure of a K. 

There are many other kinds of multiple-stage search, such as the forward-
backward search algorithm (not to be confused with the forward-backward 
algorithm) (Austin et al., 1991) which performs a simple forward search fol-
lowed by a detailed backward (i.e. time-reversed) search. 
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ACOUSTIC PROCESSING OF SPEECH 

This section presents a very brief overview of the kind of acoustic processing 
commonly called feature extraction or signal analysis in the speech recog-
nition literature. The term features refers to the vector of numbers which 
represent one time-slice of a speech signal. A number of kinds of features 
are commonly used, such as LPC features and PLP features. All of these are 
spectral features, which means that they represent the waveform in terms of 
the distribution of different frequencies which make up the waveform; such 
a distribution of frequencies is called a spectrum. We will begin with a brief 
introduction to the acoustic waveform and how it is digitized, summarize the 
idea of frequency analysis and spectra, and then sketch out different kinds of 
extracted features. This will be an extremely brief overview; the interested 
reader should refer to other books on the linguistics aspects of acoustic pho-
netics (Johnson, 1997; Ladefoged, 1996) or on the engineering aspects of 
digital signal processing of speech (Rabiner and Juang, 1993). 

Sound Waves 

The input to a speech recognizer, like the input to the human ear, is a complex 
series of changes in air pressure. These changes in air pressure obviously 
originate with the speaker, and are caused by the specific way that air passes 
through the glottis and out the oral or nasal cavities. We represent sound 
waves by plotting the change in air pressure over time. One metaphor which 
sometimes helps in understanding these graphs is to imagine a vertical plate 
which is blocking the air pressure waves (perhaps in a microphone in front of 
a speaker's mouth, or the eardrum in a hearer's ear). The graph measures the 
amount of compression or rarefaction (uncompression) of the air molecules 
at this plate. Figure 7.19 shows the waveform taken from the Switchboard 
corpus of telephone speech of someone saying "she just had a baby". 

Two important characteristics of a wave are its frequency and ampli-
tude. The frequency is the number of times a second that a wave repeats 
itself, or cycles. Note in Figure 7.19 that there are 28 repetitions of the wave 
in the .11 seconds we have captured. Thus the frequency of this segment of 
the wave is 28/.11 or 255 cycles per second. Cycles per second are usually 
called Hertz (shortened to Hz), so the frequency in Figure 7.19 would be 
described as 255 Hz. 

The vertical axis in Figure 7.19 measures the amount of air pressure 
variation. A high value on the vertical axis (a high amplitude) indicates 
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0470 0480 0490 0.500 05LO 0520 0.530 0.540 0550 0560 

Figure 7.19 A waveform of the vowel [iy] from the utterance shown in 
Figure 7.20. They-axis shows the changes in air pressure above and below 
normal atmospheric pressure. The x-axis shows time. Notice that the wave 
repeats regularly. 

that there is more air pressure at that point in time, a zero value means there 
is normal (atmospheric) air pressure, while a negative value means there is 
lower than normal air pressure (rarefaction). 

Two important perceptual properties are related to frequency and am-
plitude. The pitch of a sound is the perceptual correlate of frequency; in PITCH 

general if a sound has a higher-frequency we perceive it as having a higher 
pitch, although the relationship is not linear, since human hearing has differ-
ent acuities for different frequencies. Similarly, the loudness of a sound is 
the perceptual correlate of the power, which is related to the square of the 
amplitude. So sounds with higher amplitudes are perceived as louder, but 
again the relationship is not linear. 

How to Interpret a Waveform 

Since humans (and to some extent machines) can transcribe and understand 
speech just given the sound wave, the waveform must contain enough infor-
mation to make the task possible. In most cases this information is hard to 
unlock just by looking at the waveform, but such visual inspection is still 
sufficient to learn some things. For example, the difference between vowels 
and most consonants is relatively clear on a waveform. Recall that vowels 
are voiced, tend to be long, and are relatively loud. Length in time manifests 
itself directly as length in space on a waveform plot. Loudness manifests 
itself as high amplitude. How do we recognize voicing? Recall that voicing 
is caused by regular openings and closing of the vocal folds. When the vocal 
folds are vibrating, we can see regular peaks in amplitude of the kind we saw 
in Figure 7.19. During a stop consonant, for example the closure of a [p], [ t], 
or [k], we should expect no peaks at all; in fact we expect silence. 

Notice in Figure 7.20 the places where there are regular amplitude 
peaks indicating voicing; from second .46 to .58 (the vowel [iy]), from sec-
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ond .65 to .74 (the vowel [ax]) and so on. The places where there is no 
amplitude indicate the silence of a stop closure; for example from second 
1.06 to second 1.08 (the closure for the first [b], or from second 1.26 to 1.28 
(the closure for the second [b]). 

_j _j J _j J _j _jj _j J _j J 

Figure 7.20 A waveform of the sentence "She just had a baby" from the 
Switchboard corpus (conversation 4325). The speaker is female, was 20 years 
old in 1991 which is approximately when the recording was made, and speaks 
the South Midlands dialect of American English. The phone labels show 
where each phone ends. 

Fricatives like [sh] can also be recognized in a waveform; they produce 
an intense irregular pattern; the [sh] from second .33 to .46 is a good example 
of a fricative. 

Spectra 

While some broad phonetic features (presence of voicing, stop closures, 
fricatives) can be interpreted from a waveform, more detailed classification 
(which vowel? which fricative?) requires a different representation of the 
input in terms of spectral features. Spectral features are based on the in-
sight of Fourier that every complex wave can be represented as a sum of 
many simple waves of different frequencies. A musical analogy for this is 
the chord; just as a chord is composed of multiple notes, any waveform is 
composed of the waves corresponding to its individual "notes". 

Consider Figure 7.21, which shows part ofthe waveform for the vowel 
[re] of the word had at second 0.9 of the sentence. Note that there is a com-
plex wave which repeats about nine times in the figure; but there is also a 
smaller repeated wave which repeats four times for every larger pattern (no-
tice the four small peaks inside each repeated wave). The complex wave has 
a frequency of about 250Hz (we can figure this out since it repeats roughly 
9 times in .036 seconds, and 9 cycles/.036 seconds= 250Hz). The smaller 
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Figure 7.21 The waveform of part of the vowel from the word had cut 
out from the waveform shown in Figure 7.20. 

wave then should have a frequency of roughly 4 times the frequency of the 
larger wave, or roughly 1000 Hz. Then if you look carefully you can see 
two little waves on the peak of many of the 1000 Hz waves. The frequency 
of this tiniest wave must be roughly twice that of the 1000 Hz wave, hence 
2000Hz. 

A spectrum is a representation of these different frequency compo-
nents of a wave. It can be computed by a Fourier transform, a mathematical 
procedure which separates out each of the frequency components of a wave. 
Rather than using the Fourier transform spectrum directly, most speech ap-
plications use a smoothed version of the spectrum called the LPC spectrum 
(Atal and Hanauer, 1971; Itakura, 1975). 

Figure 7.22 shows an LPC spectrum for the waveform in Figure 7 .21. 
LPC (Linear Predictive Coding) is a way of coding the spectrum which 
makes it easier to see where the spectral peaks are. 
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Figure 7.22 An LPC spectrum for the vowel [ waveform of She just had 
a baby at the point in time shown in Figure 7.21. LPC makes it easy to see 
formants. 
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The x-axis of a spectrum shows frequency while they-axis shows some 
measure of the magnitude of each frequency component (in decibels (dB), 
a logarithmic measure of amplitude). Thus Figure 7.22 shows that there are 
important frequency components at 930Hz, 1860Hz, and 3020Hz, along 
with many other lower-magnitude frequency components. These important 
components at roughly 1000 Hz and 2000 Hz are just what we predicted by 
looking at the wave in Figure 7.21! 

Why is a spectrum useful? It turns out that these spectral peaks that 
are easily visible in a spectrum are very characteristic of different sounds; 
phones have characteristic spectral 'signatures'. For example different chem-
ical elements give off different wavelengths of light when they bum, allow-
ing us to detect elements in stars light-years away by looking at the spectrum 
of the light. Similarly, by looking at the spectrum of a waveform, we can de-
tect the characteristic signature of the different phones that are present. This 
use of spectral information is essential to both human and machine speech 
recognition. In human audition, the function of the cochlea or inner ear is 
to compute a spectrum of the incoming waveform. Similarly, the features 
used as input to the HMMs in speech recognition are all representations of 
spectra, usually variants of LPC spectra, as we will see. 

While a spectrum shows the frequency components of a wave at one 
point in time, a spectrogram is a way of envisioning how the different fre-
quencies which make up a waveform change over time. The x-axis shows 
time, as it did for the waveform, but the y-axis now shows frequencies in Hz. 
The darkness of a point on a spectrogram corresponding to the amplitude of 
the frequency component. For example, look in Figure 7.23 around second 
0.9, and notice the dark bar at around 1000 Hz. This means that the [iy] 
of the word she has an important component around 1000Hz (1000Hz is 
just between the notes B and C). The dark horizontal bars on a spectrogram, 
representing spectral peaks, usually of vowels, are called formants. 

What specific clues can spectral representations give for phone identi-
fication? First, different vowels have their formants at characteristic places. 
We've seen that [re] in the sample waveform had formants at 930Hz, 1860 
Hz, and 3020Hz. Consider the vowel [iy], at the beginning of the utterance 
in Figure 7.20. The spectrum for this vowel is shown in Figure 7.24. The first 
formant of [iy] is 540Hz; much lower than the first formant for [re], while the 
second formant (2581 Hz) is much higher than the second formant for [re]. 
If you look carefully you can see these formants as dark bars in Figure 7.23 
just around 0.5 seconds. 

The location of the first two formants (called F1 and F2) plays a large 
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Figure 7.23 A spectrogram of the sentence "She just had a baby" whose 
waveform was shown in Figure 7.20. One way to think of a spectrogram is as 
a collection of spectra (time-slices) like Figure 7.22 placed end to end. 
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Figure 7.24 A smoothed (LPC) spectrum for the vowel [iy] at the start of 
She just had a baby. Note that the first formant (540Hz) is much lower than 
the first formant for shown in Figure 7.22, while the second formant (2581 
Hz) is much higher than the second formant 

role in determining vowel identity, although the formants still differ from 
speaker to speaker. Formants also can be used to identify the nasal phones 
[n], [m], and [IJ], the lateral phone [1], and [r]. Why do different vowels have 
different spectral signatures? The formants are caused by the resonant cav-
ities of the mouth. The oral cavity can be thought of as a filter which se-
lectively passes through some of the harmonics of the vocal cord vibrations. 
Moving the tongue creates spaces of different size inside the mouth which 
selectively amplify waves of the appropriate wavelength, hence amplifying 
different frequency bands. 
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Feature Extraction 

Our survey of the features of waveforms and spectra was necessarily brief, 
but the reader should have the basic idea of the importance of spectral fea-
tures and their relation to the original waveform. Let's now summarize the 
process of extraction of spectral features, beginning with the sound wave 
itself and ending with a feature vector.4 An input soundwave is first dig-
itized. This process of analog-to-digital conversion has two steps: sam-
pling and quantization. A signal is sampled by measuring its amplitude 
at a particular time; the sampling rate is the number of samples taken per 
second. Common sampling rates are 8,000 Hz and 16,000 Hz. In order to 
accurately measure a wave, it is necessary to have at least two samples in 
each cycle: one measuring the positive part of the wave and one measuring 
the negative part. More than two samples per cycle increases the amplitude 
accuracy, but less than two samples will cause the frequency of the wave to 
be completely missed. Thus the maximum frequency wave that can be mea-
sured is one whose frequency is half the sample rate (since every cycle needs 
2 samples). This maximum frequency for a given sampling rate is called the 
Nyquist frequency. Most information in human speech is in frequencies be-
low 10,000 Hz; thus a 20,000 Hz sampling rate would be necessary for com-
plete accuracy. But telephone speech is filtered by the switching network, 
and only frequencies less than 4,000 Hz are transmitted by telephones. Thus 
an 8,000 Hz sampling rate is sufficient for telephone-bandwidth speech like 
the Switchboard corpus. 

Even an 8,000 Hz sampling rate requires 8000 amplitude measure-
ments for each second of speech, and so it is important to store the amplitude 
measurement efficiently. They are usually stored as integers, either 8-bit 
(values from -128- 127) or 16 bit (values from -32768- 32767). This pro-
cess of representing a real-valued number as a integer is called quantization 
because there is a minimum granularity (the quantum size) and all values 
which are closer together than this quantum size are represented identically. 

Once a waveform has been digitized, it is converted to some set of 
spectral features. An LPC spectrum is represented by a vector of features; 
each formant is represented by two features, plus two additional features to 
represent spectral tilt. Thus 5 formants can be represented by 12 (5x2+2) 
features. It is possible to use LPC features directly as the observation sym-

4 The reader might want to bear in mind Picone's (1993) reminder that the use of the word 
extraction should not be thought of as encouraging the metaphor of features as something 
'in the signal' waiting to be extracted. 
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bols of an HMM. However, further processing is often done to the features. 
One popular feature set is cepstral coefficients, which are computed from 
the LPC coefficients by taking the Fourier transform of the spectrum. An-
other feature set, PLP (Perceptual Linear Predictive analysis (Hermansky, 
1990)), takes the LPC features and modifies them in ways consistent with 
human hearing. For example, the spectral resolution of human hearing is 
worse at high frequencies, and the perceived loudness of a sound is related 
to the cube rate of its intensity. So PLP applies various filters to the LPC 
spectrum and takes the cube root of the features. 

7.6 COMPUTING ACOUSTIC PROBABILITIES 

The last section showed how the speech input can be passed through signal 
processing transformations and turned into a series of vectors of features, 
each vector representing one time-slice of the input signal. How are these 
feature vectors turned into probabilities? 

One way to compute probabilities on feature vectors is to first cluster 
them into discrete symbols that we can count; we can then compute the 
probability of a given cluster just by counting the number of times it occurs in 
some training set. This method is usually called vector quantization. Vector 
quantization was quite common in early speech recognition algorithms but 
has mainly been replaced by a more direct but compute-intensive approach: 
computing observation probabilities on a real-valued ('continuous') input 
vector. This method thus computes a probability density function or pdf 
over a continuous space. 

There are two popular versions of the continuous approach. The most 
widespread of the two is the use of Gaussian pdfs, in the simplest ver-
sion of which each state has a single Gaussian function which maps the 
observation vector Ot to a probability. An alternative approach is the use 
of neural networks or multi-layer perceptrons which can also be trained 
to assign a probability to a real-valued feature vector. HMMs with Gaus-
sian observation-probability-estimators are trained by a simple extension to 
the forward-backward algorithm (discussed in Appendix D). HMMs with 
neural-net observation-probability-estimators are trained by a completely 
different algorithm known as error back-propagation. 

In the simplest use of Gaussians, we assume that the possible values 
of the observation feature vector Ot are normally distributed, and so we rep-
resent the observation probability function b 1 ( Ot) as a Gaussian curve with 
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mean vector J.li and covariance matrix [ 1; (prime denotes vector transpose). 
We present the equation here for completeness, although we will not cover 
the details ofthe mathematics: 

b ·(o) = 1 e[(o,-,uj)'Ljt(o,-,uj)] 
J t J(2rc) I [jl (7.10) 

Usually we make the simplifying assumption that the covariance ma-
trix r.1 is diagonal, i.e. that it contains the simple variance of cepstral feature 
1, the simple variance of cepstral feature 2, and so on, without worrying 
about the effect of cepstral feature 1 on the variance of cepstral feature 2. 
This means that in practice we are keeping only a single separate mean and 
variance for each feature in the feature vector. 

Most recognizers do something even more complicated; they keep 
multiple Gaussians for each state, so that the probability of each feature of 
the observation vector is computed by adding together a variety of Gaussian 
curves. This technique is called Gaussian mixtures. In addition, many ASR 
systems share Gaussians between states in a technique known as parameter 
tying (or tied mixtures) (Huang and Jack, 1989). For example acoustically 
similar phone states might share (i.e. use the same) Gaussians for some fea-
tures. 

How are the mean and covariance of the Gaussians estimated? It is 
helpful again to consider the simpler case of a non-hidden Markov Model, 
with only one state i. The vector of feature means J.1 and the vector of covari-
ances r. could then be estimated by averaging: 

Pi 
1 T 
- [ot 
T t=l 

(7.11) 

ti 
1 T 
T [[(ot- J.li)' (ot- J.lJ)] (7.12) 

t=l 
But since there are multiple hidden states, we don't know which obser-

vation vector Ot was produced by which state. Appendix D will show how 
the forward-backward algorithm can be modified to assign each observation 
vector Ot to every possible state i, prorated by the probability that the HMM 
was in state i at timet. 

An alternative way to model continuous-valued features is the use of a 
neural network, multilayer perceptron (MLP) or Artificial Neural Net-
works (ANNs). Neural networks are far too complex for us to introduce in 
a page or two here; thus we will just give the intuition of how they are used 
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in probability estimation as an alternative to Gaussian estimators. The inter-
ested reader should consult basic neural network textbooks (Anderson, 1995; 
Hertz et al., 1991) as well as references specifically focusing on neural-
network speech recognition (Bourlard and Morgan, 1994). 

A neural network is a set of small computation units connected by 
weighted links. The network is given a vector of input values and computes 
a vector of output values. The computation proceeds by each computational 
unit computing some non-linear function of its input units and passing the 
resulting value on to its output units. 

The use of neural networks we will describe here is often called a hy-
brid HMM-MLP approach, since it uses some elements of the HMM (such HYBRID 

as the state-graph representation of the pronunciation of a word) but the 
observation-probability computation is done by an MLP instead of a mix-
ture of Gaussians. The input to these MLPs is a representation of the signal 
at a time t and some surrounding window; for example this might mean a 
vector of spectral features for a time t and 8 additional vectors for times 
t + IOms, t + 20ms, t + 30ms, t + 40ms, t - IOms, etc. Thus the input to 
the network is a set of nine vectors, each vector having the complete set of 
real-valued spectral features for one time slice. The network has one output 
unit for each phone; by constraining the values of all the output units to sum 
to 1, the net can be used to compute the probability of a state j given an 
observation vector Ot, or P(jl Ot). Figure 7.25 shows a sample of such a net. 

This MLP computes the probability of the HMM state j given an ob-
servation Ot, or P(q1lot)· But the observation likelihood we need for the 
HMM, b1(ot), is P(otlq1). The Bayes rule can help us see how to compute 
one from the other. The net is computing: 

( ·I ) _ P(otlqJ)p(qJ) (7.13) 
p qJ Ot - ( ) pOt 

We can rearrange the terms as follows: 
p(otlqJ) P(qJiot) 

p(ot) p(qJ) 
(7.14) 

The two terms on the right-hand side of (7.14) can be directly com-
puted from the MLP; the numerator is the output of the MLP, and the denom-
inator is the total probability of a given state, summing over all observations 
(i.e. the sum over all t of cr1(t)). Thus although we cannot directly compute 
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P(otlq1), we can use (7.14) to compute which is known as a scaled 
likelihood (the likelihood divided by the probability of the observation) . 
In fact, the scaled likelihood is just as good as the regular likelihood, since 
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Figure 7.25 A neural net used to estimate phone state probabilities. Such 
a net can be used in an HMM model as an alternative to the Gaussian models. 
This particular net is from the MLP systems described in Bourlard and M organ 
(1994); it is given a vector of features for a frame and for the four frames 
on either side, and estimates p(qjlo1). This probability is then converted to 
an estimate of the observation likelihood b = p(o1lqj) using the Bayes rule. 
These nets are trained using the error-back-propagation algorithm as part of 
the same embedded training algorithm that is used for Gaussians. 

the probability of the observation p( o1 ) is a constant during recognition and 
doesn't hurt us to have in the equation. 

The error-back-propagation algorithm for training an MLP requires 
that we know the correct phone label qj for each observation o1 • Given a 
large training set of observations and correct labels, the algorithm iteratively 
adjusts the weights in the MLP to minimize the error with this training set. 
In the next section we will see where this labeled training set comes from, 
and how this training fits in with the embedded training algorithm used 
for HMMs. Neural nets seem to achieve roughly the same performance as 
a Gaussian model but have the advantage of using less parameters and the 
disadvantage of taking somewhat longer to train. 
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METHODOLOGY BOX: WORD ERROR RATE 

The standard evaluation metric for speech recognition systems 
is the word error rate. The word error rate is based on how much 
the word string returned by the recognizer (often called the hypoth-
esized word string) differs from a correct or reference transcription. 
Given such a correct transcription, the first step in computing word 
error is to compute the minimum edit distance in words between 
the hypothesized and correct strings. The result of this computation 
will be the minimum number of word substitutions, word inser-
tions, and word deletions necessary to map between the correct and 
hypothesized strings. The word error rate is then defined as follows 
(note that because the equation includes insertions, the error rate can 
be great than 100% ): 
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Insertions +Substitutions+ Deletions Word Error Rate = 100--------------
Total Words in Correct Transcript 

Here is an example of alignments between a reference and a 
hypothesized utterance from the CALLHOME corpus, showing the 
counts used to compute the word error rate: 
REP: *** ** UM the PHONE IS LEFf THE portable 
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable 
Eval: I I s D s s s 
REP: **** PHONE UPSTAIRS last night so the battery ran out 
HYP: FORM OF STORES last night so the battery ran out 
Eval: I s s 
This utterance has 6 substitutions, 3 insertions, and 1 deletion: 

6+3+1 Word Error Rate = 100 
18 

=56% 

As of the time of this writing, state-of-the-art speech recognition 
systems were achieving around 20% word error rate on natural-
speech tasks like the National Institute of Standards and Technology 
(NIST)'s Hub4 test set from the Broadcast News corpus (Chen et al., 
1999), and around 40% word error rate on NIST's Hub5 test set from 
the combined Switchboard, Switchboard-I!, and CALLHOME cor-
pora (Hain et al., 1999). 



270 

7.7 

EMBEDDED 
TRAINING 

Chapter 7. HMMs and Speech Recognition 

TRAINING A SPEECH RECOGNIZER 

We have now introduced all the algorithms which make up the standard 
speech recognition system that was sketched in Figure 7.2 on page 239. 
We've seen how to build a Viterbi decoder, and how it takes 3 inputs (the 
observation likelihoods (via Gaussian or MLP estimation from the spectral 
features), the HMM lexicon, and theN-gram language model) and produces 
the most probable string of words. But we have not seen how all the proba-
bilistic models that make up a recognizer get trained. 

In this section we give a brief sketch of the embedded training proce-
dure that is used by most ASR systems, whether based on Gaussians, MLPs, 
or even vector quantization. Some of the details of the algorithm (like the 
forward-backward algorithm for training HMM probabilities) have been re-
moved to Appendix D. 

Let's begin by summarizing the four probabilistic models we need to 
train in a basic speech recognition system: 

• language model probabilities: P(wilwi-IWi-2) 
• observation likelihoods: b 1 ( Ot) 
• transition probabilities: aiJ 
• pronunciation lexicon: HMM state graph structure 

In order to train these components we usually have 
• a training corpus of speech wavefiles, together with a word-transcription. 
• a much larger corpus of text for training the language model, includ-

ing the word-transcriptions from the speech corpus together with many 
other similar texts. 

• often a smaller training corpus of speech which is phonetically labeled 
(i.e. frames of the acoustic signal are hand-annotated with phonemes). 
Let's begin with theN-gram language model. This is trained in the 

way we described in Chapter 6; by counting N-gram occurrences in a large 
corpus, then smoothing and normalizing the counts. The corpus used for 
training the language model is usually much larger than the corpus used to 
train the HMM a and b parameters. This is because the larger the training 
corpus the more accurate the models. Since N -gram models are much faster 
to train than HMM observation probabilities, and since text just takes less 
space than speech, it turns out to be feasible to train language models on 
huge corpora of as much as half a billion words of text. Generally the corpus 
used for training the HMM parameters is included as part of the language 
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model training data; it is important that the acoustic and language model 
training be consistent. 

The HMM lexicon structure is built by hand, by taking an off-the-shelf 
pronunciation dictionary such as the PRONLEX dictionary (LDC, 1995) or 
the CMUdict dictionary, both described in Chapter 4. In some systems, each 
phone in the dictionary maps into a state in the HMM. So the word cat would 
have 3 states corresponding to [k], [ae], and [t]. Many systems, however, use 
the more complex subphone structure described on page 249, in which each 
phone is divided into 3 states: the beginning, middle and final portions of 
the phone, and in which furthermore there are separate instances of each of 
these subphones for each triphone context. 

The details of the embedded training of the HMM parameters varies; 
we'll present a simplified version. First, we need some initial estimate of 
the transition and observation probabilities aiJ and b1(ot). For the transi-
tion probabilities, we start by assuming that for any state all the possible 
following states are all equiprobable. The observation probabilities can be 
bootstrapped from a small hand-labeled training corpus. For example, the 
TIMIT or Switchboard corpora contain approximately 4 hours each of pho-
netically labeled speech. They supply a 'correct' phone state label q for each 
frame of speech. These can be fed to an MLP or averaged to give initial 
Gaussian means and variances. For MLPs this initial estimate is important, 
and so a hand-labeled bootstrap is the norm. For Gaussian models the initial 
value of the parameters seems to be less important and so the initial mean 
and variances for Gaussians often are just set identically for all states by 
using the mean and variances of the entire training set. 

Now we have initial estimates for the a and b probabilities. The next 
stage of the algorithm differs for Gaussian and MLP systems. For MLP sys-
tems we apply what is called a forced Viterbi alignment. A forced Viterbi 
alignment takes as input the correct words in an utterance, along with the 
spectral feature vectors. It produces the best sequence of HMM states, with 
each state aligned with the feature vectors. A forced Viterbi is thus a simpli-
fication of the regular Viterbi decoding algorithm, since it only has to figure 
out the correct phone sequence, but doesn't have to discover the word se-
quence. It is called forced because we constrain the algorithm by requiring 
the best path to go through a particular sequence of words. It still requires 
the Viterbi algorithm since words have multiple pronunciations, and since 
the duration of each phone is not fixed. The result of the forced Viterbi is a 
set of features vectors with 'correct' phone labels, which can then be used to 
retrain the neural network. The counts of the transitions which are taken in 
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the forced alignments can be used to estimate the HMM transition probabil-
ities. 

For the Gaussian HMMs, instead of using forced Viterbi, we use the 
forward-backward algorithm described in Appendix D. We compute the for-
ward and backward probabilities for each sentence given the initial a and 
b probabilities, and use them to re-estimate the a and b probabilities. Just 
as for the MLP situation, the forward-backward algorithm needs to be con-
strained by our knowledge of the correct words. The forward-backward al-
gorithm computes its probabilities given a model A. We use the 'known' 
words sequence in a transcribed sentence to tell us which word models to 
string together to get the model A that we use to compute the forward and 
backward probabilities for each sentence. 

7.8 WAVEFORM GENERATION FOR SPEECH SYNTHESIS 

Now that we have covered acoustic processing we can return to the acoustic 
component of a text-to-speech (TTS) system. Recall from Chapter 4 that the 
output of the linguistic processing component of a TTS system is a sequence 
of phones, each with a duration, and a FO contour which specifies the pitch. 

TARGET This specification is often called the target, as it is this that we want the 
synthesizer to produce. 

The most commonly used type of algorithm works by waveform con-
WAVEFORM 
coNcATENA- catenation. Such concatenative synthesis is based on a database of speech 
TION 

that has been recorded by a single speaker. This database is then segmented 
into a number of short units, which can be phones, diphones, syllables, words 
or other units. The simplest sort of synthesizer would have phone units and 
the database would have a single unit for each phone in the phone inventory. 
By selecting units appropriately, we can generate a series of units which 
match the phone sequence in the input. By using signal processing to smooth 
joins at the unit edges, we can simply concatenate the waveforms for each of 
these units to form a single synthetic speech waveform. 

Experience has shown that single phone concatenative systems don't 
produce good quality speech. Just as in speech recognition, the context of 
the phone plays an important role in its acoustic pattern and hence a /tf before 
a /a/ sounds very different from a /tf before an /s/. 

The trip hone models described in Figure 7.11 on page 249 are a pop-
ular choice of unit in speech recognition, because they cover both the left 
and right contexts of a phone. Unfortunately, a language typically has a 
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very large number of triphones (tens of thousands) and it is currently pro-
hibitive to collect so many units for speech synthesis. Hence diphones are DIPHONEs 

often used in speech synthesis as they provide a reasonable balance between 
context-dependency and size (typically 1000-2000 in a language). In speech 
synthesis, diphone units normally start half-way through the first phone and 
end half-way through the second. This is because it is known that phones are 
more stable in the middle than at the edges, so that the middles of most la! 
phones in a diphone are reasonably similar, even if the acoustic patterns start 
to differ substantially after that. If diphones are concatenated in the middles 
of phones, the discontinuities between adjacent units are often negligible. 

Pitch and Duration Modification 

The diphone synthesizer as just described will produce a reasonable qual-
ity speech waveform corresponding to the requested phone sequence. But 
the pitch and duration (i.e. the prosody) of each phone in the concatenated 
waveform will be the same as when the diphones were recorded and will not 
correspond to the pitch and durations requested in the input. The next stage 
of the synthesis process therefore is to use signal processing techniques to 
change the prosody of the concatenated waveform. 

The linear prediction (LPC) model described earlier can be used for 
prosody modification as it explicitly separates the pitch of a signal from its 
spectral envelope If the concatenated waveform is represented by a sequence 
of linear prediction coefficients, a set of pulses can be generated correspond-
ing to the desired pitch and used to re-excite the coefficients to produce a 
speech waveform again. By contracting and expanding frames of coeffi-
cients, the duration can be changed. While linear prediction produces the 
correct FO and durations it produces a somewhat "buzzy" speech signal. 

Another technique for achieving the same goal is the time-domain 
pitch-synchronous overlap and add (TD-PSOLA) technique. TD-PSOLA TD-PsoLA 

works pitch-synchronously in that each frame is centered around a pitch-
mark in the speech, rather than at regular intervals as in normal speech sig-
nal processing. The concatenated waveform is split into a number of frames, 
each centered around a pitchmark and extending a pitch period either side. 
Prosody is changed by recombining these frames at a new set of pitchmarks 
determined by the requested pitch and duration of the input. The synthetic 
waveform is created by simply overlapping and adding the frames. Pitch is 
increased by making the new pitchmarks closer together (shorter pitch peri-
ods implies higher frequency pitch), and decreased by making them further 
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apart. Speech is made longer by duplication frames and shorter by leav-
ing frames out. The operation of TD-PSOLA can be compared to that of a 
tape recorder with variable speed - if you play back a tape faster than it was 
recorded, the pitch periods will come closer together and hence the pitch 
will increase. But speeding up a tape recording effectively increases the fre-
quency of all the components of the speech (including the formants which 
characterize the vowels) and will give the impression of a "squeaky", unnat-
ural voice. TD-PSOLA differs because it separates each frame first and then 
decreases the distance between the frames. Because the internals of each 
frame aren't changed, the frequency of the non-pitch components is hardly 
altered, and the resultant speech sounds the same as the original except with 
a different pitch. 

Unit Selection 

While signal processing and diphone concatenation can produce reasonable 
quality speech, the result is not ideal. There are a number of reasons for this, 
but they all boil down to the fact that having a single example of each diphone 
is not enough. First of all, signal processing inevitably incurs distortion, 
and the quality of the speech gets worse when the signal processing has to 
stretch the pitch and duration by large amounts. Furthermore, there are many 
other subtle effects which are outside the scope of most signal processing 
algorithms. For instance, the amount of vocal effort decreases over time as 
the utterance is spoken, producing weaker speech at the end of the utterance. 
If diphones are taken from near the start of an utterance, they will sound 
unnatural in phrase-final positions. 

Unit-selection synthesis is an attempt to address this problem by col-
lecting several examples of each unit at different pitches and durations and 
linguistic situations, so that the unit is close to the target in the first place 
and hence the signal processing needs to do less work. One technique for 
unit-selection (Hunt and Black, 1996) works as follows: 

The input to the algorithm is the same as other concatenative synthe-
sizers, with the addition that the FO contour is now specified as three FO 
values per phone, rather than as a contour. The technique uses phones as 
its units, indexing phones in a large database of naturally occurring speech 
Each phone in the database is also marked with a duration and three pitch 
values. The algorithm works in two stages. First, for each phone in the target 
word, a set of candidate units which match closely in terms of phone identity, 
duration and FO is selected from the database. These candidates are ranked 
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using a target cost function, which specifies just how close each unit actu-
ally is to the target. The second part of the algorithm works by measuring 
how well each candidate for each unit joins with its neighbor's candidates. 
Various locations for the joins are assessed, which allows the potential for 
units to be joined in the middle, as with diphones. These potential joins are 
ranked using a concatenation cost function. The final step is to pick the best 
set of units which minimize the overall target and concatenation cost for the 
whole sentence. This step is performed using the Viterbi algorithm in a sim-
ilar way to HMM speech recognition: here the target cost is the observation 
probability and the concatenation cost is the transition probability. 

By using a much larger database which contains many examples of 
each unit, unit -selection synthesis often produces more natural speech than 
straight diphone synthesis. Some systems then use signal processing to make 
sure the prosody matches the target, while others simply concatenate the 
units following the idea that a utterance which only roughly matches the 
target is better than one that exactly matches it but also has some signal 
processing distortion. 

7.9 HUMAN SPEECH RECOGNITION 

Speech recognition in humans shares some features with the automatic speech 
recognition models we have presented. We mentioned above that signal pro-
cessing algorithms like PLP analysis (Hermansky, 1990) were in fact in-
spired by properties of the human auditory system. In addition, four proper-
ties of human lexical access (the process of retrieving a word from the men-
tallexicon) are also true of ASR models: frequency, parallelism, neigh-
borhood effects, and cue-based processing. For example, as in ASR with 
its N -gram language models, human lexical access is sensitive to word fre-
quency, High-frequency spoken words are accessed faster or with less in-
formation than low-frequency words. They are successfully recognized in 
noisier environments than low frequency words, or when only parts of the 
words are presented (Howes, 1957; Grosjean, 1980; Tyler, 1984, inter alia). 
Like ASR models, human lexical access is parallel: multiple words are ac-
tive at the same time (Marslen-Wilson and Welsh, 1978; Salasoo and Pisoni, 
1985, inter alia). Human lexical access exhibits neighborhood effects (the 
neighborhood of a word is the set of words which closely resemble it). 
Words with large frequency-weighted neighborhoods are accessed slower 
than words with less neighbors (Luce et al., 1990). Jurafsky (1996) shows 
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that the effect of neighborhood on access can be explained by the Bayesian 
models used in ASR. 

Finally, human speech perception is cue-based: speech input is inter-
preted by integrating cues at many different levels. For example, there is 
evidence that human perception of individual phones is based on the inte-
gration of multiple cues, including acoustic cues, such as formant structure 
or the exact timing of voicing, (Oden and Massaro, 1978; Miller, 1994), vi-
sual cues, such as lip movement (Massaro and Cohen, 1983; Massaro, 1998), 
and lexical cues such as the identity of the word in which the phone is placed 
(Warren, 1970; Samuel, 1981; Connine and Clifton, 1987; Connine, 1990). 
For example, in what is often called the phoneme restoration effect, Warren 
(1970) took a speech sample and replaced one phone (e.g. the [s] in legisla-
ture) with a cough. Warren found that subjects listening to the resulting tape 
typically heard the entire word legislature including the [s], and perceived 
the cough as background. Other cues in human speech perception include 
semantic word association (words are accessed more quickly if a semanti-
cally related word has been heard recently) and repetition priming (words 
are accessed more quickly if they themselves have just been heard). The 
intuitions of both ofthese results are incorporated into recent language mod-
els discussed in Chapter 6, such as the cache model of Kuhn and de Mori 
(1990), which models repetition priming, or the trigger model of Rosenfeld 
(1996) and the LSA models of Coccaro and Jurafsky (1998) and Bellegarda 
(1999), which model word association. In a fascinating reminder that good 
ideas are never discovered only once, Cole and Rudnicky (1983) point out 
that many of these insights about context effects on word and phone pro-
cessing were actually discovered by William Bagley (Bagley, 1901). Bagley 
achieved his results, including an early version of the phoneme restoration 
effect, by recording speech on Edison phonograph cylinders, modifying it, 
and presenting it to subjects. Bagley's results were forgotten and only redis-
covered much later. 

One difference between current ASR models and human speech recog-
nition is the time-course of the model. It is important for the performance of 
the ASR algorithm that the the decoding search optimizes over the entire ut-
terance. This means that the best sentence hypothesis returned by a decoder 
at the end of the sentence may be very different than the current-best hy-
pothesis, half way into the sentence. By contrast, there is extensive evidence 
that human processing is on-line: people incrementally segment and utter-
ance into words and assign it an interpretation as they hear it. For example, 
Marslen-Wilson (1973) studied close shadowers: people who are able to 
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shadow (repeat back) a passage as they hear it with lags as short as 250 ms. 
Marslen-Wilson found that when these shadowers made errors, they were 
syntactically and semantically appropriate with the context, indicating that 
word segmentation, parsing, and interpretation took place within these 250 
ms. Cole (1973) and Cole and Jakimik (1980) found similar effects in their 
work on the detection of mispronunciations. These results have led psy-
chological models of human speech perception (such as the Cohort model 
(Marslen-Wilson and Welsh, 1978) and the computational TRACE model 
(McClelland and Elman, 1986)) to focus on the time-course of word selec-
tion and segmentation. The TRACE model, for example, is a connectionist 
or neural network interactive-activation model, based on independent com-
putational units organized into three levels: feature, phoneme, and word. 
Each unit represents a hypothesis about its presence in the input. Units are 
activated in parallel by the input, and activation flows between units; con-
nections between units on different levels are excitatory, while connections 
between units on single level are inhibitatory. Thus the activation of a word 
slightly inhibits all other words. 

We have focused on the similarities between human and machine speech 
recognition; there are also many differences. In particular, many other cues 
have been been shown to play a role in human speech recognition but have 
yet to be successfully integrated into ASR. The most important class of these 
missing cues is prosody. To give only one example, Cutler and Norris (1988), 
Cutler and Carter (1987) note that most multisyllabic English word tokens 
have stress on the initial syllable, suggesting in their metrical segmentation 
strategy (MSS) that stress should be used as a cue for word segmentation. 

7.10 SUMMARY 

Together with chapters 4, 5, and 6, this chapter introduced the fundamental 
algorithms for addressing the problem of Large Vocabulary Continuous 
Speech Recognition and Text-To-Speech synthesis. 

• The input to a speech recognizer is a series of acoustic waves. The 
waveform, spectrogram and spectrum are among the visualization 
tools used to understand the information in the signal. 

• In the first step in speech recognition, wound waves are sampled, 
quantized, and converted to some sort of spectral representation; A 
commonly used spectral representation is the LPC cepstrum, which 
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provides a vector of features for each time-slice of the input. 
• These feature vectors are used to estimate the phonetic likelihoods 

(also called observation likelihoods) either by a mixture of Gaussian 
estimators or by a neural net. 

• Decoding or search is the process of finding the optimal sequence of 
model states which matches a sequence of input observations. (The 
fact that are two terms for this process is a hint that speech recogni-
tion is inherently inter-disciplinary, and draws its metaphors from more 
than one field; decoding comes from information theory, and search 
from artificial intelligence). 

• We introduced two decoding algorithms: time-synchronous Viterbi 
decoding (which is usually implemented with pruning and can then be 
called beam search) and stack or A* decoding. Both algorithms take 
as input a series of feature vectors, and 2 ancillary algorithms: one for 
assigning likelihoods (e.g. Gaussians or MLP) and one for assigning 
priors (e.g. anN-gram language model). Both give as output a string 
of words. 

• The embedded training paradigm is the normal method for training 
speech recognizers. Given an initial lexicon with hand-built pronunci-
ation structures, it will train the HMM transition probabilities and the 
HMM observation probabilities. This HMM observation probability 
estimation can be done via a Gaussian or an MLP. 

• One way to implement the acoustic component of a TTS system is with 
concatenative synthesis, in which an utterance is built by concatenat-
ing and then smoothing diphones taken from a large database of speech 
recorded by a single speaker. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The first machine which recognized speech was probably a commercial toy 
named "Radio Rex" which was sold in the 1920's. Rex was a celluloid dog 
which moved (via a spring) when the spring was released by 500Hz acoustic 
energy. Since 500Hz is roughly the first formant of the vowel in "Rex", the 
dog seemed to come when he was called (David and Selfridge, 1962). 

By the late 1940's and early 1950's, a number of machine speech 
recognition systems had been built. An early Bell Labs system could rec-
ognize any of the 10 digits from a single speaker (Davis et al., 1952). This 
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system had 10 speaker-dependent stored patterns, one for each digit, each of 
which roughly represented the first two vowel formants in the digit. They 
achieved 97-99% accuracy by choosing the pattern which had the highest 
relative correlation coefficient with the input. Fry (1959) and Denes (1959) 
built a phoneme recognizer at University College, London, which recognized 
four vowels and nine consonants based on a similar pattern-recognition prin-
ciple. Fry and Denes's system was the first to use phoneme transition prob-
abilities to constrain the recognizer. 

The late 1960s and early 1970's produced a number of important para-
digm shifts. First were a number of feature-extraction algorithms, include 
the efficient Fast Fourier Transform (FFT) (Cooley and Tukey, 1965), the 
application of cepstral processing to speech (Oppenheim et al., 1968), and 
the development of LPC for speech coding (Atal and Hanauer, 1971). Sec-
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the input signal to handle differences in speaking rate and segment length 
when matching against stored patterns. The natural algorithm for solving 
this problem was dynamic programming, and, as we saw in Chapter 5, the 
algorithm was reinvented multiple times to address this problem. The first 
application to speech processing was by Vintsyuk (1968), although his re-
sult was not picked up by other researchers, and was reinvented by Velichko 
and Zagoruyko (1970) and Sakoe and Chiba (1971) (and (1984)). Soon af-
terwards, Itakura (1975) combined this dynamic programming idea with the 
LPC coefficients that had previously been used only for speech coding. The 
resulting system extracted LPC features for incoming words and used dy-
namic programming to match them against stored LPC templates. 

The third innovation of this period was the rise of the HMM. Hid-
den Markov Models seem to have been applied to speech independently 
at two laboratories around 1972. One application arose from the work of 
statisticians, in particular Baum and colleagues at the Institute for Defense 
Analyses in Princeton on HMMs and their application to various predic-
tion problems (Baum and Petrie, 1966; Baum and Eagon, 1967). James 
Baker learned of this work and applied the algorithm to speech process-
ing (Baker, 1975) during his graduate work at CMU. Independently, Freder-
ick Jelinek, Robert Mercer, and Lalit Bahl (drawing from their research in 
information-theoretical models influenced by the work of Shannon (1948)) 
applied HMMs to speech at the IBM Thomas J. Watson Research Center 
(Jelinek et al., 1975). IBM's and Baker's systems were very similar, par-
ticularly in their use of the Bayesian framework described in this chapter. 
One early difference was the decoding algorithm; Baker's DRAGON system 
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used Viterbi (dynamic programming) decoding, while the IBM system ap-
plied Jelinek's stack decoding algorithm (Jelinek, 1969). Baker then joined 
the IBM group for a brief time before founding the speech-recognition com-
pany Dragon Systems. The HMM approach to speech recognition would 
turn out to completely dominate the field by the end of the century; indeed 
the IBM lab was the driving force in extending statistical models to natural 
language processing as well, including the development of class-based N-
grams, HMM-based part-of-speech tagging, statistical machine translation, 
and the use of entropy/perplexity as an evaluation metric. 

The use of the HMM slowly spread through the speech community. 
One cause was a number of research and development programs sponsored 
by the Advanced Research Projects Agency of the U.S. Department of De-
fense (ARPA). The first five-year program starting in 1971, and is reviewed 
in Klatt (1977). The goal of this first program was to build speech under-
standing systems based on a few speakers, a constrained grammar and lexi-
con (1000 words), and less than 10% semantic error rate. Four systems were 
funded and compared against each other: the System Development Corpo-
ration (SDC) system, Bolt, Beranek & Newman (BBN)'s HWIM system, 
Carnegie-Mellon University's Hearsay-II system, and Carnegie-Mellon's Harpy 
system (Lowerre, 1968). The Harpy system used a simplified version of 
Baker's HMM-based DRAGON system and was the best of the tested sys-
tems, and according to Klatt the only one to meet the original goals of the 
ARPA project (with a semantic error rate of94% on a simple task). 

Beginning in the mid-80's, ARPA funded a number of new speech 
research programs. The first was the "Resource Management" (RM) task 
(Price et al., 1988), which like the earlier ARPA task involved transcrip-
tion (recognition) of read-speech (speakers reading sentences constructed 
from a 1000-word vocabulary) but which now included a component that 
involved speaker-independent recognition. Later tasks included recognition 
of sentences read from the Wall Street Journal (WSJ) beginning with limited 
systems of 5,000 words, and finally with systems of unlimited vocabulary 
(in practice most systems use approximately 60,000 words). Later speech-
recognition tasks moved away from read-speech to more natural domains; 
the Broadcast News (also called Hub-4) domain (LDC, 1998; Graff, 1997) 
(transcription of actual news broadcasts, including quite difficult passages 
such as on-the-street interviews) and the CALLHOME and CALLFRIEND 
domain (LDC, 1999) (natural telephone conversations between friends), part 
of what was also called Hub-5. The Air Traffic Information System (ATIS) 
task (Hemphill et al., 1990) was a speech understanding task whose goal 
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was to simulate helping a user book a flight, by answering questions about 
potential airlines, times, dates, etc. 
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Each of the ARPA tasks involved an approximately annual bake-off at BAKE-OFF 

which all ARPA-funded systems, and many other 'volunteer' systems from 
North American and Europe, were evaluated against each other in terms of 
word error rate or semantic error rate. In the early evaluations, for-profit cor-
porations did not generally compete, but eventually many (especially IBM 
and ATT) competed regularly. The ARPA competitions resulted in widescale 
borrowing of techniques among labs, since it was easy to see which ideas 
had provided an error-reduction the previous year, and were probably an im-
portant factor in the eventual spread of the HMM paradigm to virtual every 
major speech recognition lab. The ARPA program also resulted in a number 
of useful databases, originally designed for training and testing systems for 
each evaluation (TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard) 
but then made available for general research use. 

There are a number of textbooks on speech recognition that are good 
choices for readers who seek a more in-depth understanding of the material 
in this chapter: Jelinek (1997), Gold and Morgan (1999), and Rabiner and 
Juang (1993) are the most comprehensive. The last two textbooks also have 
comprehensive discussions of the history of the field, and together with the 
survey paper ofLevinson (1995) have influenced our short history discussion 
in this chapter. Our description of the forward-backward algorithm was mod-
elect after Rabiner (1989). Another useful tutorial paper is Knill and Young 
(1997). Research in the speech recognition field often appears in the pro-
ceedings of the biennial EUROSPEECH Conference and the International 
Conference on Spoken Language Processing (ICSLP), held in alternating 
years, as well as the annual IEEE International Conference on Acoustics, 
Speech, and Signal Processing (ICASSP). Journals include Speech Com-
munication, Computer Speech and Language, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, and IEEE Transactions on Acoustics, 
Speech, and Signal Processing. 

EXERCISES 

7.1 Analyze each of the errors in the incorrectly recognized transcription 
of "urn the phone is I left the ... " on page 269. For each one, give your best 
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guess as to whether you think it is caused by a problem in signal process-
ing, pronunciation modeling, lexicon size, language model, or pruning in the 
decoding search. 

7.2 In practice, speech recognizers do all their probability computation us-
ing the log probability (or logprob) rather than actual probabilities. This 
helps avoid underftow for very small probabilities, but also makes the Viterbi 
algorithm very efficient, since all probability multiplications can be imple-
mented by adding log probabilities. Rewrite the pseudocode for the Viterbi 
algorithm in Figure 7.9 on page 24 7 to make use of logprobs instead of prob-
abilities. 

7.3 Now modify the Viterbi algorithm in Figure 7.9 on page 247 to im-
plement the beam search described on page 249. Hint: You will probably 
need to add in code to check whether a given state is at the end of a word or 
not. 

7.4 Finally, modify the Viterbi algorithm in Figure 7.9 on page 247 with 
more detailed pseudocode implementing the array of backtrace pointers. 

7.5 Implement the Stack decoding algorithm of Figure 7.14 on 254. Pick 
a very simple h* function like an estimate of the number of words remaining 
in the sentence. 

7.6 Modify the forward algorithm of Figure 5.16 to use the tree-structured 
lexicon of Figure 7.18 on page 257. 


