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CHAPTER

26 Dialogue Systems and Chat-
bots

Les lois de la conversation sont en général de ne s’y appesantir sur aucun ob-
jet, mais de passer légèrement, sans effort et sans affectation, d’un sujet à un
autre ; de savoir y parler de choses frivoles comme de choses sérieuses

The rules of conversation are, in general, not to dwell on any one subject,
but to pass lightly from one to another without effort and without affectation;
to know how to speak about trivial topics as well as serious ones;

The 18th C. Encyclopedia of Diderot, start of the entry on conversation

The literature of the fantastic abounds in inanimate objects magically endowed with
sentience and the gift of speech. From Ovid’s statue of Pygmalion to Mary Shelley’s
Frankenstein, there is something deeply moving about creating something and then
having a chat with it. Legend has it that after finishing his
sculpture Moses, Michelangelo thought it so lifelike that
he tapped it on the knee and commanded it to speak. Per-
haps this shouldn’t be surprising. Language is the mark
of humanity and sentience, and conversation or dialogueconversation

dialogue is the most fundamental and specially privileged arena
of language. It is the first kind of language we learn as
children, and for most of us, it is the kind of language
we most commonly indulge in, whether we are ordering
curry for lunch or buying spinach, participating in busi-
ness meetings or talking with our families, booking air-
line flights or complaining about the weather.

This chapter introduces the fundamental algorithms of conversational agents,conversational
agent

or dialogue systems. These programs communicate with users in natural languagedialogue system

(text, speech, or both), and fall into two classes. Task-oriented dialogue agents use
conversation with users to help complete tasks. Dialogue agents in digital assistants
(Siri, Alexa, Google Now/Home, Cortana, etc.), give directions, control appliances,
find restaurants, or make calls. Conversational agents can answer questions on cor-
porate websites, interface with robots, and even be used for social good: DoNotPay
is a “robot lawyer” that helps people challenge incorrect parking fines, apply for
emergency housing, or claim asylum if they are refugees. By contrast, chatbots
are systems designed for extended conversations, set up to mimic the unstructured
conversations or ‘chats’ characteristic of human-human interaction, mainly for en-
tertainment, but also for practical purposes like making task-oriented agents more
natural. In Section 26.2 we’ll discuss the three major chatbot architectures : rule-
based systems, information retrieval systems, and encoder-decoder models. In Sec-
tion 26.3 we turn to task-oriented agents, introducing the frame-based architecture
(the GUS architecture) that underlies most modern task-based systems.
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26.1 Properties of Human Conversation

Conversation between humans is an intricate and complex joint activity. Before we
attempt to design a conversational agent to converse with humans, it is crucial to
understand something about how humans converse with each other. Consider some
of the phenomena that occur in the conversation between a human travel agent and
a human client excerpted in Fig. 26.1.

C1: . . . I need to travel in May.
A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.
A2: And you’re flying into what city?
C3: Seattle.
A3: And what time would you like to leave Pittsburgh?
C4: Uh hmm I don’t think there’s many options for non-stop.
A4: Right. There’s three non-stops today.
C5: What are they?
A5: The first one departs PGH at 10:00am arrives Seattle at 12:05 their time. The

second flight departs PGH at 5:55pm, arrives Seattle at 8pm. And the last
flight departs PGH at 8:15pm arrives Seattle at 10:28pm.

C6: OK I’ll take the 5ish flight on the night before on the 11th.
A6: On the 11th? OK. Departing at 5:55pm arrives Seattle at 8pm, U.S. Air flight

115.
C7: OK.
A7: And you said returning on May 15th?
C8: Uh, yeah, at the end of the day.
A8: OK. There’s #two non-stops . . . #
C9: #Act. . . actually #, what day of the week is the 15th?
A9: It’s a Friday.
C10: Uh hmm. I would consider staying there an extra day til Sunday.
A10: OK. . . OK. On Sunday I have . . .
Figure 26.1 Part of a phone conversation between a human travel agent (A) and human
client (C). The passages framed by # in A8 and C9 indicate overlaps in speech.

Turns

A dialogue is a sequence of turns (A1, B1, A2, and so on), each a single contributionturn

to the dialogue (as if in a game: I take a turn, then you take a turn, then me, and so
on). A turn can consist of a sentence (like C1), although it might be as short as a
single word (C7) or as long as multiple sentences (A5).

Turn structure has important implications for spoken dialogue. A system has to
know when to stop talking; the client interrupts (in A8 and C9), so the system must
know to stop talking (and that the user might be making a correction). A system also
has to know when to start talking. For example, most of the time in conversation,
speakers start their turns almost immediately after the other speaker finishes, without
a long pause, because people are able to (most of the time) detect when the other
person is about to finish talking. Spoken dialogue systems must also detect whether
a user is done speaking, so they can process the utterance and respond. This task—
called endpointing or endpoint detection— can be quite challenging because ofendpointing

noise and because people often pause in the middle of turns.
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Speech Acts

A key insight into conversation—due originally to the philosopher Wittgenstein
(1953) but worked out more fully by Austin (1962)—is that each utterance in a
dialogue is a kind of action being performed by the speaker. These actions are com-
monly called speech acts or dialog acts: here’s one taxonomy consisting of 4 majorspeech acts

classes (Bach and Harnish, 1979):

Constatives: committing the speaker to something’s being the case (answering, claiming,
confirming, denying, disagreeing, stating)

Directives: attempts by the speaker to get the addressee to do something (advising, ask-
ing, forbidding, inviting, ordering, requesting)

Commissives: committing the speaker to some future course of action (promising, planning,
vowing, betting, opposing)

Acknowledgments: express the speaker’s attitude regarding the hearer with respect to some so-
cial action (apologizing, greeting, thanking, accepting an acknowledgment)

A user asking a person or a dialogue system to do something (‘Turn up the
music’) is issuing a DIRECTIVE. Asking a question that requires an answer is also
a way of issuing a DIRECTIVE: in a sense when the system says (C2) “what day in
May did you want to travel?” it’s as if the system is (very politely) commanding
the system to answer. By contrast, a user stating a constraint (like C1 ‘I need to
travel in May’) is issuing a CONSTATIVE. A user thanking the system is issuing
an ACKNOWLEDGMENT. The speech act expresses an important component of the
intention of the speaker (or writer) in saying what they said.

Grounding

A dialogue is not just a series of independent speech acts, but rather a collective act
performed by the speaker and the hearer. Like all collective acts, it’s important for
the participants to establish what they both agree on, called the common groundcommon

ground
(Stalnaker, 1978). Speakers do this by grounding each other’s utterances. Ground-grounding

ing means acknowledging that the hearer has understood the speaker; like an ACK
used to confirm receipt in data communications (Clark, 1996). (People need ground-
ing for non-linguistic actions as well; the reason an elevator button lights up when
it’s pressed is to acknowledge that the elevator has indeed been called (Norman,
1988).)

Humans constantly ground each other’s utterances. We can ground by explicitly
saying “OK”, as the agent does in A8 or A10. Or we can ground by repeating what
the other person says; in utterance A1 the agent repeats “in May”, demonstrating her
understanding to the client. Or notice that when the client answers a question, the
agent begins the next question with “And”. The “And” implies that the new question
is ‘in addition’ to the old question, again indicating to the client that the agent has
successfully understood the answer to the last question.

Subdialogues and Dialogue Structure

Conversations have structure. Consider, for example, the local structure between
speech acts discussed in the field of conversational analysis (Sacks et al., 1974).conversational

analysis
QUESTIONS set up an expectation for an ANSWER. PROPOSALS are followed by
ACCEPTANCE (or REJECTION). COMPLIMENTS (“Nice jacket!”) often give rise to
DOWNPLAYERS (“Oh, this old thing?”). These pairs, called adjacency pairs areadjacency pair

composed of a first pair part and a second pair part (Schegloff, 1968), and these
expectations can help systems decide what actions to take.



4 CHAPTER 26 • DIALOGUE SYSTEMS AND CHATBOTS

However, dialogue acts aren’t always followed immediately by their second pair
part. The two parts can be separated by a side sequence (Jefferson 1972) or sub-side sequence

dialogue. For example utterances C9 to A10 constitute a correction subdialoguesubdialogue

(Litman 1985, Litman and Allen 1987, Chu-Carroll and Carberry 1998):

C9: #Act. . . actually#, what day of the week is the 15th?
A9: It’s a Friday.
C10: Uh hmm. I would consider staying there an extra day til Sunday.
A10: OK. . . OK. On Sunday I have . . .

The question in C9 interrupts the prior discourse, in which the agent was looking
for a May 15 return flight. The agent must answer the question and also realize that
‘’I would consider staying...til Sunday” means that the client would probably like to
change their plan, and now go back to finding return flights, but for the 17th.

Another side sequence is the clarification question, which can form a subdia-
logue between a REQUEST and a RESPONSE. This is especially common in dialogue
systems where speech recognition errors causes the system to have to ask for clari-
fications or repetitions like the following:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Let’s see, going where on the 5th?
User: Going to Hong Kong.

System: OK, here are some flights...

In addition to side-sequences, questions often have presequences, like the fol-presequence

lowing example where a user starts with a question about the system’s capabilities
(“Can you make train reservations”) before making a request.

User: Can you make train reservations?
System: Yes I can.
User: Great, I’d like to reserve a seat on the 4pm train to New York.

Initiative

Sometimes a conversation is completely controlled by one participant. For example
a reporter interviewing a chef might ask questions, and the chef responds. We say
that the reporter in this case has the conversational initiative (Walker and Whittaker,initiative

1990). In normal human-human dialogue, however, it’s more common for initiative
to shift back and forth between the participants, as they sometimes answer questions,
sometimes ask them, sometimes take the conversations in new directions, sometimes
not. You may ask me a question, and then I respond asking you to clarify something
you said, which leads the conversation in all sorts of ways. We call such interactions
mixed initiative.

Mixed initiative, while the norm for human-human conversations, is very diffi-
cult for dialogue systems to achieve. It’s much easier to design dialogue systems to
be passive responders. In the question answering systems we saw in Chapter 25, or
in simple search engines, the initiative lies completely with the user. In such user-
initiative systems, the user specifies a query, and the systems responds. Then the
user can specify another query. Alternatively, you may have had the experience of
being stuck in a bad dialogue system that asks a question and gives you no opportu-
nity to do anything until you answer it. Such system-initiative architectures can be
very frustrating.
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Inference and Implicature

Inference is also important in dialogue understanding. Consider the client’s response
C2, repeated here:

A1: And, what day in May did you want to travel?
C2: OK uh I need to be there for a meeting that’s from the 12th to the 15th.

Notice that the client does not in fact answer the agent’s question. The client
merely mentions a meeting at a certain time. What is it that licenses the agent to
infer that the client is mentioning this meeting so as to inform the agent of the travel
dates?

The speaker seems to expect the hearer to draw certain inferences; in other
words, the speaker is communicating more information than seems to be present
in the uttered words. This kind of example was pointed out by Grice (1975, 1978)
as part of his theory of conversational implicature. Implicature means a particu-implicature

lar class of licensed inferences. Grice proposed that what enables hearers to draw
these inferences is that conversation is guided by a set of maxims, general heuristics
that play a guiding role in the interpretation of conversational utterances. One such
maxim is the maxim of relevance which says that speakers attempt to be relevant,relevance

they don’t just utter random speech acts. When the client mentions a meeting on the
12th, the agent reasons ‘There must be some relevance for mentioning this meeting.
What could it be?’. The agent knows that one precondition for having a meeting
(at least before Web conferencing) is being at the place where the meeting is held,
and therefore that maybe the meeting is a reason for the travel, and if so, then since
people like to arrive the day before a meeting, the agent should infer that the flight
should be on the 11th.

These subtle characteristics of human conversations (turns, speech acts, ground-
ing, dialogue structure, initiative, and implicature) are among the reasons it is dif-
ficult to build dialogue systems that can carry on natural conversations with humans.
Many of these challenges are active areas of dialogue systems research.

26.2 Chatbots

The simplest kinds of dialogue systems are chatbots, systems that can carry onchatbot

extended conversations with the goal of mimicking the unstructured conversations
or ‘chats’ characteristic of informal human-human interaction.

These systems often have an entertainment value, such as Cleverbot, a simple IR-
based chatbot capable of carrying on the kinds of conversations shown in Fig. 26.2,
or Microsoft’s XiaoIce system1 (Zhou et al., 2018), a more sophisticated commercial
system that chats with people on text messaging platforms (Fig. 26.3). Yet starting
from the very first system, ELIZA (Weizenbaum, 1966), chatbots have also been
used for practical purposes, such as testing theories of psychological counseling.

Like practically everything else in language processing, chatbot architectures
fall into two classes: rule-based systems and corpus-based systems. Rule-based
systems include the early influential ELIZA and PARRY systems. Corpus-based
systems mine large datasets of human-human conversations, which can be done by
using information retrieval (IR-based systems simply copy a human’s response from

1 XiaoIce is a somewhat confusing translation of the systems Chinese name小冰, ‘Xiao Bing’, which
means Little Bing or Little Ice.
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User: Do you like Doctor Who?
Cleverbot: Yes, so funny.
User: What’s your favorite show?
Cleverbot: I don’t have one.
User: What’s your name?
Cleverbot: Jason I already told you.
User: No your real name.
Cleverbot: Stephanie IS my real name.
User: I thought it was Jason?
Cleverbot: How did you come to that conclusion.
User: Because you said so.
Cleverbot: I have to do my homework.
Figure 26.2 Chatbots: A conversation between a user and Cleverbot, an IR-based chatbot
(Carpenter, 2017).

［人类］ 小冰你好 [Human] Hello, XiaoIce.
［小冰］ 你好呀，你头像好有趣，感觉

在哪见过
[XiaoIce] Hello, your profile pic is interesting.

Like I’ve seen it somewhere.
［人类］ 是吗 [Human] Really?
［小冰］ 提不是哪部动画里的呀 [XiaoIce] Is it a comic character?
［人类］ 你怎么知道的 [Human] How do you know that?
［小冰］ 你猜 [XiaoIce] Guess.
［人类］ 难道你是真人吗？ [Human] Are you human?
［小冰］ 这个，你和我多聊聊就知道了 [XiaoIce] Well, you’ll know it after chatting with

me more.
［人类］ 你不是人工智能机器人么 [Human] Aren’t you an Al chatbot?
［小冰］ 是又怎样，我不会冷冰冰的对

待你的
[XiaoIce] So what? I won’t be indifferent to you.

［人类］ 你都有什么功能啊 [Human] What functions do you have?
［小冰］ 我有200多个skills，来，说出

你的需求
[XiaoIce] I have over 200 skills. Just name one

you need.
Figure 26.3 A sample Chinese conversation from the XiaoIce chatbot, together with translation from Zhou
et al. (2018).

a previous conversation) or by using a machine translation paradigm such as neural
network sequence-to-sequence systems, to learn to map from a user utterance to a
system response.

26.2.1 Rule-based chatbots: ELIZA and PARRY
ELIZA (Weizenbaum, 1966) is the most important chatbot dialogue system in the
history of the field, and so we take some time here to describe its algorithm in de-
tail. ELIZA was designed to simulate a Rogerian psychologist, based on a branch
of clinical psychology whose methods involve drawing the patient out by reflecting
patient’s statements back at them. Rogerian psychology is the rare type of conver-
sation in which, as Weizenbaum points out, one can “assume the pose of knowing
almost nothing of the real world”. If a patient says “I went for a long boat ride” and
the psychiatrist says “Tell me about boats”, you don’t assume she didn’t know what
a boat is, but rather assume she had some conversational goal. Most chatbots trying
to pass the Turing test choose a domain with similar properties.

Fig. 26.4 shows the most famous ELIZA conversation, in which ELIZA seems
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Men are all alike.
IN WHAT WAY
They’re always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE
Well my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE
He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED
....
WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?
My father
YOUR FATHER
You are like my father in some ways.
WHAT RESEMBLANCE DO YOU SEE
You are not very aggressive but I think you don’t want me to notice that.
WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
You don’t argue with me.
WHY DO YOU THINK I DON’T ARGUE WITH YOU
You are afraid of me.
DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU
My father is afraid of everybody.
WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER
Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR
BOYFRIEND MADE YOU COME HERE

Figure 26.4 Sample ELIZA dialogue from Weizenbaum (1966).

to simulate giving very sophisticated therapeutic advice, excerpted (deleting some
material with ...) from a full interaction given in the original paper (Weizenbaum,
1966).

As we summarized briefly in Chapter 2, ELIZA worked by pattern/transform
rules like the following one:

(0 YOU 0 ME) [pattern]

->

(WHAT MAKES YOU THINK I 3 YOU) [transform]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers
are the index of the constituent in the pattern. Thus the number 3 refers to the second
0 in the first pattern. This rule would transfer

You hate me

into:

WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sen-
tence. The architecture is summarized in Fig. 26.5.

Keywords are associated with a rank, with specific words being more highly
ranked, and more general words ranking lower. Consider the following user sen-
tence:
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function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response←Apply the transform in r to sentence
if w = ‘my’

future←Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response←Apply the transform for the NONE keyword to sentence
or

response←Pop the top response from the memory stack
return(response)

Figure 26.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm
comes from the particular transforms associated with each keyword.

I know everybody laughed at me

Because it has the word “I”, this sentence could match the following rule whose
keyword is I:

(I *) -> (You say you 2)

producing:

YOU SAY YOU KNOW EVERYBODY LAUGHED AT YOU

But as Weizenbaum points out, “I” is a very general word and its keywords lead
to very general responses. Instead the keyword “everybody” is much more interest-
ing, since someone using universals like everybody or always is probably “referring
to some quite specific event or person”. Therefore, ELIZA prefers to respond with
the pattern associated with the more specific keyword everybody (implementing by
just assigning ”everybody” rank 5 and ”I” rank 0 in the lexicon), whose rule thus
transforms the sentence to:

WHO IN PARTICULAR ARE YOU THINKING OF?

If no keyword matches, ELIZA chooses a non-commital response like “PLEASE
GO ON”, “THAT’S VERY INTERESTING”, or “I SEE”.

Finally, ELIZA has a clever memory trick that accounts for the very last sen-
tence of the conversation above. Whenever the word “my” is the highest ranked
keyword, ELIZA will randomly select a transform on the MEMORY list, apply it to
the sentence, and store it on the stack:

(MEMORY MY

(0 MY 0 = LETS DISCUSS FURTHER WHY YOUR 3)

(0 MY 0 = EARLIER YOU SAID YOUR 3)

(0 MY 0 = DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 3

Later, if no keyword matches a sentence, ELIZA will return the top of the MEM-
ORY queue instead. 2

2 Fun fact: because of its structure as a queue, this MEMORY trick is the earliest known hierarchical
model of discourse in natural language processing.
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People became deeply emotionally involved with the program. Weizenbaum
tells the story of one of his staff who would ask Weizenbaum to leave the room
when she talked with ELIZA. When Weizenbaum suggested that he might want to
store all the ELIZA conversations for later analysis, people immediately pointed
out the privacy implications, which suggested that they were having quite private
conversations with ELIZA, despite knowing that it was just software.

ELIZA’s framework is still used today; modern chatbot system tools like ALICE
are based on updated versions of ELIZA’s pattern/action architecture.

A few years after ELIZA, another chatbot with a clinical psychology focus,
PARRY (Colby et al., 1971), was used to study schizophrenia. In addition to ELIZA-
like regular expressions, the PARRY system included a model of its own mental
state, with affect variables for the agent’s levels of fear and anger; certain topics of
conversation might lead PARRY to become more angry or mistrustful. If PARRY’s
anger variable is high, he will choose from a set of “hostile” outputs. If the input
mentions his delusion topic, he will increase the value of his fear variable and then
begin to express the sequence of statements related to his delusion. Parry was the
first known system to pass the Turing test (in 1972!); psychiatrists couldn’t distin-
guish text transcripts of interviews with PARRY from transcripts of interviews with
real paranoids (Colby et al., 1972).

26.2.2 Corpus-based chatbots
Corpus-based chatbots, instead of using hand-built rules, mine conversations of
human-human conversations, (or sometimes mine the human sides of human-machine
conversations).

These systems are enormously data-intensive; Serban et al. (2018) estimate that
training modern chatbots require hundreds of millions or even billions of words.
Many such corpora have been used, including large spoken conversational corpora
like the Switchboard corpus of American English telephone conversations (God-
frey et al., 1992) or the various CALLHOME and CALLFRIEND telephone con-
versational corpora in many languages. Many systems also train on movie dialogue,
which is available in great quantities in various corpora (Lison and Tiedemann, 2016,
inter alia), and which resembles natural conversation in many ways (Forchini, 2013).
Text from microblogging sites like Twitter (Ritter et al., 2010) or a Weibo (微博)
have also been used, or datasets of crowdworker conversations like Topical-Chat
(Gopalakrishnan et al., 2019). Many corpora also focus on specific topics, and can
be used for topical chatbots. See Serban et al. (2018) for a comprehensive summary
of available corpora. Another common technique is to extract possible responses
from non-dialogue corpora, so that a chatbot can tell stories or mention facts ac-
quired in that way.

Finally, once a chatbot has been put into practice, the turns that humans use to
respond to the chatbot can be used as additional conversational data for training.
The XiaoIce system collects and stores all human-machine conversations between
XiaoIce and its users, resulting in a a dataset of over 30 billion conversation pairs.
It’s crucial in these cases to remove personally identifiable information (PII); see
Section 26.6.1.

The two main architectures for corpus-based chatbots: information retrieval, and
machine learned sequence transduction. Like rule-based chatbots (but unlike frame-
based dialogue systems), most corpus-based chatbots do very little modeling of the
conversational context. Instead they tend to focus on generating a single response
turn that is appropriate given the user’s immediately previous utterance or two. For
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this reason they are often called response generation systems. Corpus-based chat-response
generation

bots thus have some similarity to question answering systems, which focus on single
responses while ignoring context or larger conversational goals.

IR-based chatbots

The principle behind information retrieval based chatbots is to respond to a user’s
turn X by repeating some appropriate turn Y from a corpus of natural (human) text
of the sort described in the prior section.

Given the corpus and the user’s sentence, IR-based systems can use any retrieval
algorithm to choose an appropriate response from the corpus. The two simplest
methods are the following:
1. Return the response to the most similar turn: Given user query q and a con-
versational corpus C, find the turn t in C that is most similar to q (for example has
the highest cosine with q) and return the following turn, i.e. the human response to t
in C:

r = response
(

argmax
t∈C

qT t
||q||t||

)
(26.1)

The idea is that we should look for a turn that most resembles the user’s turn, and re-
turn the human response to that turn (Jafarpour et al. 2009, Leuski and Traum 2011).
2. Return the most similar turn: Given user query q and a conversational corpus
C, return the turn t in C that is most similar to q (for example has the highest cosine
with q):

r = argmax
t∈C

qT t
||q||t||

(26.2)

The idea here is to directly match the users query q with turns from C, since a good
response will often share words or semantics with the prior turn.

In each case, any similarity function can be used, such as cosines computed
either over words (weighted by tf-idf) or more commonly now, cosines over any
kind of sentence embeddings.

Although returning the response to the most similar turn seems like a more in-
tuitive algorithm, returning the most similar turn seems to work better in practice,
perhaps because selecting the response adds another layer of indirection that can
allow for more noise (Ritter et al. 2011, Wang et al. 2013).

The IR-based approach can be extended by using more features than just the
words in the q. For example using the entire conversation with the user so far
can be quite helpful when the user’s query is short (like “Yes” or “OK”). Infor-
mation about the user or sentiment or other information can also play a role. The
IR-based approach can even draw responses from narrative (non-dialogue) text. The
COBOT chatbot (Isbell et al., 2000) pioneered this approach, generating responses
by selecting sentences from a corpus that combined the Unabomber Manifesto by
Theodore Kaczynski, articles on alien abduction, the scripts of “The Big Lebowski”
and “Planet of the Apes”. Chatbots that want to generate informative turns such as
answers to user questions can use texts like Wikipedia to draw on sentences that
might contain those answers (Yan et al., 2016). XiaoIce similarly collects sentences
from public lectures and news articles and searches them using IR based on query
expansion from the user’s turn to respond to turns like “Tell me something about
Beijing” (Zhou et al., 2018).

Encoder decoder chatbots
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“What ho!” I said.
“What ho!” said Motty.
“What ho! What ho!”
“What ho! What ho! What ho!”
After that it seemed rather difficult to go on with the conversation.”

Wodehouse My Man Jeeves

An alternate way to use a corpus to generate dialogue is to think of response
generation as a task of transducing from the user’s prior turn to the system’s turn.
This is basically the machine learning version of Eliza; the system learns from a
corpus to transduce a question to an answer.

This idea was first developed by using phrase-based machine translation (Ritter
et al., 2011) to translate a user turn to a system response. It quickly became clear,
however, that the task of response generation was too different from machine trans-
lation. In machine translation, words or phrases in the source and target sentences
tend to align well with each other, but in conversation, a user utterance may share no
words or phrases with a coherent response.

Instead, (roughly contemporaneously by Shang et al. 2015, Vinyals and Le 2015,
and Sordoni et al. 2015) transduction models for response generation were modeled
instead using encoder-decoder models (Chapter 11), as shown in Fig. 26.6.

How are you ?

I’m fine . EOS

Encoding Decoding

EOS I’m fine .

Figure 26.6 An encoder decoder model for neural response generation in dialogue.

A number of modifications are required to the basic encoder-decoder model to
adapt it for the task of response generation. For example basic encoder-decoder
models have a tendency to produce predictable but repetitive and therefore dull re-
sponses like “I’m OK” or “I don’t know” that shut down the conversation. This
can be addressed by changing the objective function for seq2seq model training to a
mutual information objective, or by modifying a beam decoder to keep more diverse
responses in the beam (Li et al., 2016a).

Another problem with simple encoder-decoder response generation architecture
is its inability to model the longer prior context of the conversation. This can be
done by allowing the model to see prior turns, such as by using a hierarchical model
that summarizes information over multiple prior turns (Lowe et al., 2017b).

Finally, encoder-decoder response generators focus on generating single responses,
and so don’t tend to do a good job of continuously generating responses that cohere
across multiple turns. This can be addressed by using reinforcement learning, as
well as techniques like adversarial networks, to learn to choose responses that make
the overall conversation more natural (Li et al. 2016b, Li et al. 2017).

Fig. 26.7 shows some sample responses generated by a vanilla SEQ2SEQ model,
and from a model trained by an adversarial algorithm to produce responses that are
harder to distinguish from human responses (Li et al., 2017).



12 CHAPTER 26 • DIALOGUE SYSTEMS AND CHATBOTS

Input tell me ... how long have you had this falling sickness ?
Vanilla-SEQ2SEQ i’m not a doctor.
Adversarial a few months, i guess .

Input so i had the doctors test sammy ’s response to conditioning .
Vanilla-SEQ2SEQ sammy wrote the test sammy wrote the test .
Adversarial so he took the pills .

Input they didn ’t have much success with this problem commander .
Vanilla-SEQ2SEQ they ’re not the only ones who have been in the system .
Adversarial can we find someone else ?

Figure 26.7 Sample responses generated by a SEQ2SEQ model trained either with a vanilla
maximum likelihood objective, or adversarially trained to produce sentences that are hard for
an adversary to distinguish from human sentences (Li et al., 2017).

Evaluating Chatbots

Chatbots are generally evaluated by humans. The slot-filling evaluations used for
task-based dialogue (Section 26.5) aren’t appropriate for this task (Artstein et al.,
2009), and word-overlap metrics like BLEU for comparing a chatbot’s response to a
human response turn out to correlate very poorly with human judgments (Liu et al.,
2016). BLEU performs poorly because there are so many possible responses to any
given turn; word-overlap metrics work best when the space of responses is small and
lexically overlapping, as is the case in machine translation.

While human evaluation is therefore required for evaluating chatbots, there are
beginning to be models for automatic evaluation. The ADEM (Lowe et al., 2017a)
classifier is trained on a set of responses labeled by humans with how appropriate
they are, and learns to predict this label from the dialogue context and the words in
the system response.

Another paradigm is adversarial evaluation (Bowman et al. 2016, Kannan andadversarial
evaluation

Vinyals 2016, Li et al. 2017), inspired by the Turing test. The idea is to train a
“Turing-like” evaluator classifier to distinguish between human-generated responses
and machine-generated responses. The more successful a response generation sys-
tem is at fooling this evaluator, the better the system.

26.3 GUS: Simple Frame-based Dialogue Systems

We turn now to task-based dialogue, in which a dialogue system has the goal of
helping a user solve some task like making an airplane reservation or buying a prod-
uct. In this section we introduce the very simple GUS architecture for task-basedGUS

dialogue. Although it is quite old, (it was first introduced in 1977 in the influen-
tial GUS system for travel planning (Bobrow et al., 1977)) the GUS architecture
has been astonishingly long-lived and underlies most if not all modern commercial
digital assistants. Figure 26.8 shows a conversation with the original GUS system.

All modern task-based dialogue systems, whether the simple GUS architecture
we describe here, or the more sophisticated dialogue state architectures we turn todialogue state

in the following section, are based around frames. A frame is a kind of knowledgeframe

structure representing the kinds of intentions the system can extract from user sen-
tences, and consists of a collection of slots, each of which can take a set of possibleslot

values. Together this set of frames is sometimes called a domain ontology.
The set of slots in a task-based dialogue frame specifies what the system needs

to know, and the filler of each slot is constrained to values of a particular semantic
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GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight: P.S.A. flight 102 on Wednesday May 28

from San Jose to San Diego that leaves at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 26.8 The travel domain: A transcript of an actual dialogue with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

type. In the travel domain, for example, a slot might be of type city (hence take on
values like San Francisco, or Hong Kong) or of type date, airline, or time.

Slot Type Question Template
ORIGIN CITY city “From what city are you leaving?”
DESTINATION CITY city “Where are you going?”
DEPARTURE TIME time “When would you like to leave?”
DEPARTURE DATE date “What day would you like to leave?”
ARRIVAL TIME time “When do you want to arrive?”
ARRIVAL DATE date “What day would you like to arrive?”
Figure 26.9 A frame in a frame-based dialogue system, showing the type of each slot and
a question used to fill the slot.

Types in GUS, as in modern frame-based dialogue agents, have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE

MONTH:NAME YEAR:INTEGER DAY:(BOUNDED-INTEGER 1 31)

WEEKDAY:(MEMBER (Sunday Monday Tuesday Wednesday

Thursday Friday Saturday))

26.3.1 Control structure for frame-based dialogue
The control architecture for frame-based dialogue systems, used in various forms
in modern systems like Apple’s Siri, Amazon’s Alexa, and the Google Assistant, is
designed around the frame. The system’s goal is to fill the slots in the frame with the
fillers the user intends, and then perform the relevant action for the user (answering
a question, or booking a flight).

To do this, the system asks questions of the user (using pre-specified question
templates associated with each slot of each frame, as shown in Fig. 26.9), filling any



14 CHAPTER 26 • DIALOGUE SYSTEMS AND CHATBOTS

slot that the user specifies (we’ll describe how slot-filling works in the next section).
If a user’s response fills multiple slots, like the following:

(26.3) I want a flight from San Francisco to Denver one way leaving after five
p.m. on Tuesday.

the system fills all the relevant slots, and then continues asking questions to fill the
remaining slots, skipping questions associated with filled slots. The GUS architec-
ture also has condition-action rules attached to slots. For example, a rule attached
to the DESTINATION slot for the plane booking frame, once the user has specified
the destination, might automatically enter that city as the default StayLocation for
the related hotel booking frame. Or if the user specifies the DESTINATION DAY for
a short trip the system could automatically enter the ARRIVAL DAY.

Many domains require multiple frames. Besides frames for car or hotel reserva-
tions, we might need frames with general route information (for questions like Which
airlines fly from Boston to San Francisco?), or information about airfare practices
(for questions like Do I have to stay a specific number of days to get a decent air-
fare?). The system must be able to disambiguate which slot of which frame a given
input is supposed to fill and then switch dialogue control to that frame.

Because of this need to dynamically switch control, the GUS architecture is a
production rule system. Different types of inputs cause different productions to
fire, each of which can flexibly fill in different frames. The production rules can
then switch control according to factors such as the user’s input and some simple
dialogue history like the last question that the system asked.

Once the system has enough information it performs the necessary action (like
querying a database of flights) and returns the result to the user.

26.3.2 Natural language understanding for filling slots in GUS
The goal of the natural language understanding component in the frame-based archi-
tecture is to extract three things from the user’s utterance. The first task is domain
classification: is this user for example talking about airlines, programming an alarm
clock, or dealing with their calendar? Of course this 1-of-n classification tasks is
unnecessary for single-domain systems that are focused on, say, only calendar man-
agement, but multi-domain dialogue systems are the modern standard. The second
is user intent determination: what general task or goal is the user trying to accom-intent

determination
plish? For example the task could be to Find a Movie, or Show a Flight, or Remove
a Calendar Appointment. Finally, we need to do slot filling: extract the particularslot filling

slots and fillers that the user intends the system to understand from their utterance
with respect to their intent. From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL

INTENT: SHOW-FLIGHTS

ORIGIN-CITY: Boston

ORIGIN-DATE: Tuesday

ORIGIN-TIME: morning

DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6
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should give an intent like this:

DOMAIN: ALARM-CLOCK

INTENT: SET-ALARM

TIME: 2017-07-01 0600-0800

The slot-filling method used in the original GUS system, and still quite common
in industrial applications, is to use handwritten rules, often as part of the condition-
action rules attached to slots or concepts. For example we might just define a regular
expression for recognizing the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

Rule-based research systems like the Phoenix system (Ward and Issar, 1994)
consist of large hand-designed semantic grammars with thousands of rules. Asemantic

grammar
semantic grammar is a context-free grammar in which the left-hand side of each
rule corresponds to the semantic entities being expressed (i.e., the slot names) as in
the following fragment:

SHOW → show me | i want | can i see|...
DEPART TIME RANGE → (after|around|before) HOUR |

morning | afternoon | evening
HOUR → one|two|three|four...|twelve (AMPM)
FLIGHTS → (a) flight | flights
AMPM → am | pm
ORIGIN → from CITY
DESTINATION → to CITY
CITY → Boston | San Francisco | Denver |Washington

Semantic grammars can be parsed by any CFG parsing algorithm (see Chap-
ter 13), resulting in a hierarchical labeling of the input string with semantic node
labels, as shown in Fig. 26.10.

S

DEPARTTIME

morning

DEPARTDATE

Tuesdayon

DESTINATION

FranciscoSanto

ORIGIN

Bostonfrom

FLIGHTS

flights

SHOW

meShow

Figure 26.10 A semantic grammar parse for a user sentence, using slot names as the internal parse tree nodes.

It remains only to put the fillers into some sort of canonical form, for example
by normalizing dates as discussed in Chapter 18.

Many industrial dialogue systems employ the GUS architecture but use super-
vised machine learning for slot-filling instead of these kinds of rules; see Sec-
tion 26.4.2.

26.3.3 Other components of frame-based dialogue
The ASR (automatic speech recognition) component takes audio input from a phone
or other device and outputs a transcribed string of words, as discussed in Chapter 28.
The ASR component can also be made dependent on the dialogue state. For exam-
ple, if the system has just asked the user “What city are you departing from?”, the
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ASR language model component can be constrained to assign high probability to
answers with city names. This can be done by training a language model on an-
swers to this question, or by hand-writing finite-state or context-free grammars for
such sentences. A language model that is completely dependent on dialogue state is
called a restrictive grammar; usually real systems mix restrictive grammars withrestrictive

grammar
more general language models.

The natural language generation module of any dialogue system produces
the utterances that the system says to the user. Frame-based systems tend to use
template-based generation, in which all or most of the words in the sentence totemplate-based

generation
be uttered to the user are prespecified by the dialogue designer. Sentences created
by these templates are often called prompts. Templates might be completely fixedprompt

(like ‘Hello, how can I help you?’), or can include some variables that are filled in
by the generator, as in the following:

What time do you want to leave CITY-ORIG?
Will you return to CITY-ORIG from CITY-DEST?

It’s possible to do some simple grounding even in templated generation. Con-
sider the unnaturalness of this example from Cohen et al. (2004):

(26.4) System: Did you want to review some more of your personal profile?
Caller: No.
System: What’s next?

Without an acknowledgment, the caller doesn’t know that the system has under-
stood her ‘No’. The use of Okay below adds grounding to the templated response
What’s next?, making (26.5) a much more natural response than (26.4):

(26.5) System: Did you want to review some more of your personal profile?
Caller: No.
System: Okay, what’s next?

The rule-based GUS approach is very common in industrial applications. As was
true with the rule-based approach to information extraction, it has the advantage of
high precision, and if the domain is narrow enough and experts are available, can
provide sufficient coverage as well. On the other hand, the handwritten rules or
grammars can be both expensive and slow to create, and handwritten rules can suffer
from recall problems.

26.4 The Dialogue-State Architecture

Modern research systems for task-based dialogue are based on a more sophisticated
version of the frame-based architecture called the dialogue-state or belief-state ar-
chitecture. Figure 26.11 shows the six components of a typical dialogue-state sys-
tem. The speech recognition and synthesis components deal with spoken language
processing; we’ll return to them in Chapter 28.

For the rest of this chapter we therefore consider the other four components,
which are part of both spoken and textual dialogue systems. These four components
are more complex than in the simple GUS systems. For example, like the GUS
systems, the dialogue-state architecture has an NLU component to extract slot fillers
from the user’s utterance, but generally using machine learning rather than rules. The
dialogue state tracker maintains the current state of the dialogue (which include the
user’s most recent dialogue act, plus the entire set of slot-filler constraints the user
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DIALOG STATE TRACKING OVERVIEW

LEAVING FROM DOWNTOWN

LEAVING AT ONE P M

ARRIVING AT ONE P M

0.6
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{ from: downtown }

{ depart-time: 1300 }

{ arrive-time: 1300 }

0.5

0.3

0.1

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.10

from:        CMU
to:          airport
depart-time: 1300
confirmed:   no
score:       0.15

from:        downtown
to:          airport
depart-time: --
confirmed:   no
score:       0.65

Automatic Speech 
Recognition (ASR)

Spoken Language 
Understanding (SLU)

Dialog State 
Tracker (DST)

Dialog Policy

act:  confirm
from: downtown

FROM DOWNTOWN, 
IS THAT RIGHT?

Natural Language 
Generation (NLG)Text to Speech (TTS)

Figure 1: Principal components of a spoken dialog system.

The topic of this paper is the dialog state tracker (DST). The DST takes as input all of the dialog
history so far, and outputs its estimate of the current dialog state – for example, in a restaurant
information system, the dialog state might indicate the user’s preferred price range and cuisine,
what information they are seeking such as the phone number of a restaurant, and which concepts
have been stated vs. confirmed. Dialog state tracking is difficult because ASR and SLU errors are
common, and can cause the system to misunderstand the user. At the same time, state tracking is
crucial because the dialog policy relies on the estimated dialog state to choose actions – for example,
which restaurants to suggest.

In the literature, numerous methods for dialog state tracking have been proposed. These are
covered in detail in Section 3; illustrative examples include hand-crafted rules (Larsson and Traum,
2000; Bohus and Rudnicky, 2003), heuristic scores (Higashinaka et al., 2003), Bayesian networks
(Paek and Horvitz, 2000; Williams and Young, 2007), and discriminative models (Bohus and Rud-
nicky, 2006). Techniques have been fielded which scale to realistically sized dialog problems and
operate in real time (Young et al., 2010; Thomson and Young, 2010; Williams, 2010; Mehta et al.,
2010). In end-to-end dialog systems, dialog state tracking has been shown to improve overall system
performance (Young et al., 2010; Thomson and Young, 2010).

Despite this progress, direct comparisons between methods have not been possible because past
studies use different domains and different system components for ASR, SLU, dialog policy, etc.
Moreover, there has not been a standard task or methodology for evaluating dialog state tracking.
Together these issues have limited progress in this research area.

The Dialog State Tracking Challenge (DSTC) series has provided a first common testbed and
evaluation suite for dialog state tracking. Three instances of the DSTC have been run over a three

5

Figure 26.11 Architecture of a dialogue-state system for task-oriented dialogue from Williams et al. (2016).

has expressed so far). The dialogue policy decides what the system should do or say
next. The dialogue policy in GUS was simple: ask questions until the frame was full
and then report back the results of some database query. But a more sophisticated
dialogue policy can help a system decide when to answer the user’s questions, when
to instead ask the user a clarification question, when to make a suggestion, and so on.
Finally, dialogue state systems have a natural language generation component. In
GUS, the sentences that the generator produced were all from pre-written templates.
But a more sophisticated generation component can condition on the exact context
to produce turns that seem much more natural.

As of the time of this writing, most commercial system are architectural hybrids,
based on GUS architecture augmented with some dialogue-state components, but
there are a wide variety of dialogue-state systems being developed in research labs.

26.4.1 Dialogue Acts

Dialogue-state systems make use of dialogue acts. Dialogue acts represent the in-dialogue acts

teractive function of the turn or sentence, combining the idea of speech acts and
grounding into a single representation. Different types of dialogue systems require
labeling different kinds of acts, and so the tagset—defining what a dialogue act is
exactly— tends to be designed for particular tasks.

Figure 26.12 shows a tagset for a restaurant recommendation system, and Fig. 26.13
shows these tags labeling a sample dialogue from the HIS system (Young et al.,
2010). This example also shows the content of each dialogue acts, which are the slot
fillers being communicated. So the user might INFORM the system that they want
Italian food near a museum, or CONFIRM with the system that the price is reasonable.
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Tag Sys User Description
HELLO(a = x,b = y, ...) X X Open a dialogue and give info a = x,b = y, ...
INFORM(a = x,b = y, ...) X X Give info a = x,b = y, ...
REQUEST(a,b = x, ...) X X Request value for a given b = x, ...
REQALTS(a = x, ...) χ X Request alternative with a = x, ...
CONFIRM(a = x,b = y, ...) X X Explicitly confirm a = x,b = y, ...
CONFREQ(a = x, ...,d) X χ Implicitly confirm a = x, ... and request value of d
SELECT(a = x,a = y) X χ Implicitly confirm a = x, ... and request value of d
AFFIRM(a = x,b = y, ...) X X Affirm and give further info a = x,b = y, ...
NEGATE(a = x) χ X Negate and give corrected value a = x
DENY(a = x) χ X Deny that a = x
BYE() X X Close a dialogue

Figure 26.12 Dialogue acts used by the HIS restaurant recommendation system of Young
et al. (2010). The Sys and User columns indicate which acts are valid as system outputs and
user inputs, respectively.

Utterance Dialogue act
U: Hi, I am looking for somewhere to eat. hello(task = find,type=restaurant)

S: You are looking for a restaurant. What
type of food do you like?

confreq(type = restaurant, food)

U: I’d like an Italian somewhere near the
museum.

inform(food = Italian, near=museum)

S: Roma is a nice Italian restaurant near
the museum.

inform(name = "Roma", type = restaurant,

food = Italian, near = museum)

U: Is it reasonably priced? confirm(pricerange = moderate)

S: Yes, Roma is in the moderate price
range.

affirm(name = "Roma", pricerange =

moderate)

U: What is the phone number? request(phone)

S: The number of Roma is 385456. inform(name = "Roma", phone = "385456")

U: Ok, thank you goodbye. bye()
Figure 26.13 A sample dialogue from the HIS System of Young et al. (2010) using the dialogue acts in
Fig. 26.12.

26.4.2 Slot Filling
The task of slot-filling, and the simpler tasks of domain and intent classification, are
special cases of the task of supervised semantic parsing discussed in Chapter 17, in
which we have a training set that associates each sentence with the correct set of
slots, domain, and intent.

A simple method is to train a a sequence model to map from input words repre-
sentation to slot fillers, domain and intent. For example given the sentence:

I want to fly to San Francisco on Monday afternoon please

we compute a sentence representation, for example by passing the sentence through
a contextual embedding network like BERT. The resulting sentence representation
can be passed through a feedforward layer and then a simple 1-of-N classifier to
determine that the domain is AIRLINE and and the intent is SHOWFLIGHT.

Our training data is sentences paired with sequences of IOB labels:IOB

O O O O O B-DES I-DES O B-DEPTIME I-DEPTIME O

I want to fly to San Francisco on Monday afternoon please

Recall from Chapter 18 that in IOB tagging we introduce a tag for the beginning
(B) and inside (I) of each slot label, and one for tokens outside (O) any slot label.
The number of tags is thus 2n+1 tags, where n is the number of slots.
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Fig. 26.14 shows the architecture. The input is a series of words w1...wn, which
is passed through a contextual embedding model to get contextual word representa-
tions. This is followed by a feedforward layer and a softmax at each token position
over possible IOB tags, with the output is a series of IOB tags s1...sn. We can also
combine the domain-classification and intent-extraction tasks with slot-filling sim-
ply by adding a domain concatenated with an intent as the desired output for the
final EOS token.

San Francisco on Monday

Contextual
Embeddings

Classifier

B-DES I-DES O B-DTIMEOutput

…

d+i

<EOS>

softmax

Figure 26.14 A simple architecture for slot filling, mapping the words in the input through
contextual embeddings like BERT to an output classifier layer (which can be linear or some-
thing more complex), followed by softmax to generate a series of IOB tags (and including a
final state consisting of a domain concatenated with an intent).

Once the sequence labeler has tagged the user utterance, a filler string can be
extracted for each slot from the tags (e.g., “San Francisco”), and these word strings
can then be normalized to the correct form in the ontology (perhaps the airport code
‘SFO’). This normalization can take place by using homonym dictionaries (specify-
ing, for example, that SF, SFO, and San Francisco are the same place).

In industrial contexts, machine learning-based systems for slot-filling are of-
ten bootstrapped from GUS-style rule-based systems in a semi-supervised learning
manner. A rule-based system is first built for the domain, and a test-set is carefully
labeled. As new user utterances come in, they are paired with the labeling provided
by the rule-based system to create training tuples. A classifier can then be trained
on these tuples, using the test-set to test the performance of the classifier against
the rule-based system. Some heuristics can be used to eliminate errorful training
tuples, with the goal of increasing precision. As sufficient training samples become
available the resulting classifier can often outperform the original rule-based system
(Suendermann et al., 2009), although rule-based systems may still remain higher-
precision for dealing with complex cases like negation.

26.4.3 Dialogue State Tracking

The job of the dialogue-state tracker is to determine both the current state of the
frame (the fillers of each slot), as well as the user’s most recent dialogue act. The
dialogue-state thus includes more than just the slot-fillers expressed in the current
sentence; it includes the entire state of the frame at this point, summarizing all of
the user’s constraints. The following example from Mrkšić et al. (2017) shows the
required output of the dialogue state tracker after each turn:
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User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown

inform(price=cheap, food=Thai, area=centre)

System: The House serves cheap Thai food
User: Where is it?

inform(price=cheap, food=Thai, area=centre); request(address)

System: The House is at 106 Regent Street

Since dialogue acts place some constraints on the slots and values, the tasks of
dialogue-act detection and slot-filling are often performed jointly. Consider the task
of determining that

I’d like Cantonese food near the Mission District

has the structure

inform(food=cantonese,area=mission).

Dialogue act interpretation—in this example choosing inform from the set of
dialogue acts for this task—is done by supervised classification trained on hand-
labeled dialog acts, predicting the dialogue act tag based on embeddings represent-
ing the current input sentence and the prior dialogue acts.

The simplest dialogue state tracker might just take the output of a slot-filling
sequence-model (Section 26.4.2) after each sentence. Alternatively, a more complex
model can make use of the reading-comprehension architectures from Chapter 25.
For example the model of Gao et al. (2019) trains a classifier for each slot to decide
whether its value is being changed in the current sentence or should be carried over
from the previous sentences. If the slot value is being changed, a span-prediction
model is used to predict the start and end of the span with the slot filler.

A special case: detecting correction acts

Some dialogue acts are important because of their implications for dialogue control.
If a dialogue system misrecognizes or misunderstands an utterance, the user will
generally correct the error by repeating or reformulating the utterance. Detecting
these user correction acts is therefore quite important. Ironically, it turns out thatuser correction

acts
corrections are actually harder to recognize than normal sentences! In fact, correc-
tions in one early dialogue system (the TOOT system) had double the ASR word
error rate of non-corrections (Swerts et al., 2000)! One reason for this is that speak-
ers sometimes use a specific prosodic style for corrections called hyperarticulation,hyperarticula-

tion
in which the utterance contains exaggerated energy, duration, or F0 contours, such
as I said BAL-TI-MORE, not Boston (Wade et al. 1992, Levow 1998, Hirschberg
et al. 2001). Even when they are not hyperarticulating, users who are frustrated
seem to speak in a way that is harder for speech recognizers (Goldberg et al., 2003).

What are the characteristics of these corrections? User corrections tend to be
either exact repetitions or repetitions with one or more words omitted, although they
may also be paraphrases of the original utterance. (Swerts et al., 2000). Detect-
ing these reformulations or correction acts can be part of the general dialogue act
detection classifier. Alternatively, because the cues to these acts tend to appear in
different ways than for simple acts (like INFORM or request, we can make use of
features orthogonal to simple contextual embedding features; some typical features
are shown below (Levow 1998, Litman et al. 1999, Hirschberg et al. 2001, Bulyko
et al. 2005, Awadallah et al. 2015):
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features examples
lexical words like “no”, “correction”, “I don’t”, or even swear words, utterance length
semantic similarity (word overlap or embedding cosine) between the candidate correc-

tion act and the user’s prior utterance
phonetic phonetic overlap between the candidate correction act and the user’s prior ut-

terance (i.e. “WhatsApp” may be incorrectly recognized as “What’s up”)
prosodic hyperarticulation, increases in F0 range, pause duration, and word duration,

generally normalized by the values for previous sentences
ASR ASR confidence, language model probability

26.4.4 Dialogue Policy
The goal of the dialogue policy is to decide what action the system should take next,dialogue policy

that is, what dialogue act to generate.
More formally, at turn i in the conversation we want to predict which action Ai

to take, based on the entire dialogue state. The state could mean the entire sequence
of dialogue acts from the system (A) and from the user (U), in which case the task
would be to compute:

Âi = argmax
Ai∈A

P(Ai|(A1,U1, ...,Ai−1,Ui−1) (26.6)

We can simplify this by maintaining as the dialogue state mainly just the set of
slot-fillers that the user has expressed, collapsing across the many different conver-
sational paths that could lead to the same set of filled slots.

Such a policy might then just condition on the current dialogue state as repre-
sented just by the current state of the frame Framei (which slots are filled and with
what) and the last turn by the system and user:

Âi = argmax
Ai∈A

P(Ai|Framei−1,Ai−1,Ui−1) (26.7)

These probabilities can be estimated by a neural classifier using neural representa-
tions of the slot fillers (for example as spans) and the utterances (for example as
sentence embeddings computed over contextual embeddings)

More sophisticated models train the policy via reinforcement learning. To de-
cide which action to take, a reinforcement learning system gets a reward at the end
of the dialogue, and uses that reward to train a policy to take actions. For example in
the movie-recommendation dialogue system of Fazel-Zarandi et al. (2017), the ac-
tion space has only three actions: EXECUTE, CONFIRM, and ELICIT. The EXECUTE
sends a query to the database and answers the user’s question, CONFIRM clarifies
the intent or slot with the users (e.g., “Do you want movies directed by Christopher
Nolan?”) while ELICIT asks the user for missing information (e.g., “Which movie
are you talking about?”). The system gets a large positive reward if the dialogue sys-
tem terminates with the correct slot representation at the end, a large negative reward
if the slots are wrong, and a small negative reward for confirmation and elicitation
questions to keep the system from re-confirming everything.

Policy Example: Confirmation and Rejection

Modern dialogue systems often make mistakes. It is therefore important for dialogue
systems to make sure that they have achieved the correct interpretation of the user’s
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input. This is generally done by two methods: confirming understandings with the
user and rejecting utterances that the system is likely to have misunderstood.

As we saw in the prior section, most systems introduce particular strategies and
actions related to confirmation and rejection. When using the explicit confirmationexplicit

confirmation
strategy, a system asks the user a direct question to confirm the system’s under-
standing, like the two examples below in which the system asks a (boldface) yes-no
confirmation questions:

S: Which city do you want to leave from?
U: Baltimore.
S: Do you want to leave from Baltimore?
U: Yes.
U: I’d like to fly from Denver Colorado to New York City on September

twenty first in the morning on United Airlines
S: Let’s see then. I have you going from Denver Colorado to New York

on September twenty first. Is that correct?
U: Yes

When using the implicit confirmation strategy, a system instead can demon-implicit
confirmation

strate its understanding as a grounding strategy, for example repeating back the
system’s understanding as part of asking the next question, as in the two examples
below:

U: I want to travel to Berlin
S: When do you want to travel to Berlin?
U2: Hi I’d like to fly to Seattle Tuesday Morning
A3: Traveling to Seattle on Tuesday, August eleventh in the morning.

Your full name?

Explicit and implicit confirmation have complementary strengths. Explicit con-
firmation makes it easier for users to correct the system’s misrecognitions since a
user can just answer “no” to the confirmation question. But explicit confirmation is
awkward and increases the length of the conversation (Danieli and Gerbino 1995,
Walker et al. 1998). The explicit confirmation dialogue fragments above sound non-
natural and definitely non-human; implicit confirmation is much more conversation-
ally natural.

Confirmation is just one kind of conversational action by which a system can
express lack of understanding. Another option is rejection, in which a system givesrejection

the user a prompt like I’m sorry, I didn’t understand that.
Sometimes utterances are rejected multiple times. This might mean that the user

is using language that the system is unable to follow. Thus, when an utterance is
rejected, systems often follow a strategy of progressive prompting or escalatingprogressive

prompting
detail (Yankelovich et al. 1995, Weinschenk and Barker 2000), as in this example
from Cohen et al. (2004):

System: When would you like to leave?
Caller: Well, um, I need to be in New York in time for the first World Series game.
System: <reject>. Sorry, I didn’t get that. Please say the month and day you’d like

to leave.
Caller: I wanna go on October fifteenth.
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In this example, instead of just repeating “When would you like to leave?”, the
rejection prompt gives the caller more guidance about how to formulate an utter-
ance the system will understand. These you-can-say help messages are important in
helping improve systems’ understanding performance (Bohus and Rudnicky, 2005).
If the caller’s utterance gets rejected yet again, the prompt can reflect this (“I still
didn’t get that”), and give the caller even more guidance.

An alternative strategy for error handling is rapid reprompting, in which therapid
reprompting

system rejects an utterance just by saying “I’m sorry?” or “What was that?” Only
if the caller’s utterance is rejected a second time does the system start applying
progressive prompting. Cohen et al. (2004) summarize experiments showing that
users greatly prefer rapid reprompting as a first-level error prompt.

It is common to use rich features other than just the dialogue state representa-
tion to make policy decisions. For example, the confidence that the ASR system
assigns to an utterance can be used by explicitly confirming low-confidence sen-
tences. As we’ll see in page ??, confidence is a metric that the speech recognizer
can assign to its transcription of a sentence to indicate how confident it is in that
transcription. Confidence is often computed from the acoustic log-likelihood of the
utterance (greater probability means higher confidence), but prosodic features can
also be used in confidence prediction. For example, utterances with large F0 ex-
cursions or longer durations, or those preceded by longer pauses, are likely to be
misrecognized (Litman et al., 2000).

Another common feature in confirmation is the cost of making an error. For ex-
ample, explicit confirmation is common before a flight is actually booked or money
in an account is moved. Systems might have a four-tiered level of confidence with
three thresholds α , β , and γ:

< α low confidence reject
≥ α above the threshold confirm explicitly
≥ β high confidence confirm implictly
≥ γ very high confidence don’t confirm at all

26.4.5 Natural language generation in the dialogue-state model
Finally, once the policy has decided what speech act to generate, the natural language
generation component needs to generate the text of a response to the user.

Once a dialogue act has been decided, we need to generate the text of the re-
sponse to the user. The task of natural language generation (NLG) in the information-
state architecture is often modeled in two stages, content planning (what to say),content

planning
and sentence realization (how to say it).sentence

realization
Here we’ll assume content planning has been done by the dialogue policy, which

has chosen the dialogue act to generate, and chosen some attributes (slots and values)
that the planner wants to say to the user (either to give the user the answer, or as part
of a confirmation strategy).

Fig. 26.15 shows some sample input/outputs for the sentence realization phase.
In the first example, the content planner has chosen the dialogue act RECOMMEND
and some particular slots (name, neighborhood, cuisine) and their fillers. The goal
of the sentence realizer is to generate a sentence like lines 1 or 2 shown in the figure,
by training on many such examples of representation/sentence pairs from a large
corpus of labeled dialogues.

Training data is hard to come by; we are unlikely to see every possible restaurants
with every possible attribute in many possible differently worded sentences. There-
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recommend(restaurant name= Au Midi, neighborhood = midtown,

cuisine = french

1 Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.
recommend(restaurant name= Loch Fyne, neighborhood = city

centre, cuisine = seafood)

3 Loch Fyne is in the City Center and serves seafood food.
4 There is a seafood restaurant in the City Centre called Loch Fyne.

Figure 26.15 Two examples of inputs to the sentence realization phase of NLG, showing
the dialogue act and attributes prespecified by the content planner. Line 1-2 and 3-4 show dif-
ferent possible output sentences to be generated by the sentence realizer. From the restaurant
recommendation system of Nayak et al. (2017).

fore it is common in sentence realization to increase the generality of the training
examples by delexicalization. Delexicalization is the process of replacing specificdelexicalization

words in the training set that represent slot values with a generic placeholder to-
ken representing the slot. Fig. 26.16 shows the result of delexicalizing the training
sentences in Fig. 26.15.

recommend(restaurant name= Au Midi, neighborhood = midtown,

cuisine = french

1 restaurant name is in neighborhood and serves cuisine food.
2 There is a cuisine restaurant in neighborhood called restaurant name.

Figure 26.16 Delexicalized sentences that can be used for generating many different relex-
icalized sentences. From the restaurant recommendation system of Nayak et al. (2017).

Mapping from frames to delexicalized sentences is generally done by encoder
decoder models (Wen et al. 2015a, Wen et al. 2015b, Mrkšić et al. 2017, inter alia),
trained on large hand-labeled corpora of task-oriented dialogue (Budzianowski et al.,
2018). The input to the encoder is a sequence of tokens xt that represent the dialogue
act and its arguments. Thus the attribute/value pairs decor:decent, service:good,
cuisine: null might be represented as a flat sequence of tokens, each mapped to a
learned embedding wt , as shown in Fig. 26.17.

name has decent service

goodnamerecommend

hn

service

Figure 26.17 An encoder decoder sentence realizer mapping slots/fillers to English.

The encoder reads all the input slot/value representations, produces a context
vector that is used as input to the lexical decoder, which generates an English sen-
tence Let’s suppose in this case we produce the following (delexicalized) sentence:

restaurant name has decent service

Then once we’ve generated the delexicalized string, we can use the input frame
from the content planner to relexicalize (fill in the exact restaurant or neighborhoodrelexicalize

or cuisine). This sentence is then relexicalized from the true values in the input
frame, resulting in the final sentence:

Au Midi has decent service
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TTS Performance Was the system easy to understand ?
ASR Performance Did the system understand what you said?
Task Ease Was it easy to find the message/flight/train you wanted?
Interaction Pace Was the pace of interaction with the system appropriate?
User Expertise Did you know what you could say at each point?
System Response How often was the system sluggish and slow to reply to you?
Expected Behavior Did the system work the way you expected it to?
Future Use Do you think you’d use the system in the future?

Figure 26.18 User satisfaction survey, adapted from Walker et al. (2001).

Generating Clarification Questions

It’s also possible to design NLG algorithms that are specific to a particular dialogue
act. For example, consider the task of generating clarification questions, in casesclarification

questions
where the speech recognition fails to understand some part of the user’s utterance.
While it is possible to use the generic dialogue act REJECT (“Please repeat”, or “I
don’t understand what you said”), studies of human conversations show that humans
instead use targeted clarification questions that reprise elements of the misunder-
standing (Purver 2004, Ginzburg and Sag 2000, Stoyanchev et al. 2013).

For example, in the following hypothetical example the system reprises the
words “going” and “on the 5th” to make it clear which aspect of the user’s turn
the system needs to be clarified:

User: What do you have going to UNKNOWN WORD on the 5th?
System: Going where on the 5th?

Targeted clarification questions can be created by rules (such as replacing “go-
ing to UNKNOWN WORD” with “going where”) or by building classifiers to guess
which slots might have been misrecognized in the sentence (Chu-Carroll and Car-
penter 1999, Stoyanchev et al. 2014, Stoyanchev and Johnston 2015).

26.5 Evaluating Dialogue Systems

Evaluation is crucial in dialogue system design. If the task is unambiguous, we can
simply measure absolute task success (did the system book the right plane flight, or
put the right event on the calendar).

To get a more fine-grained idea of user happiness, we can compute a user sat-
isfaction rating, having users interact with a dialogue system to perform a task and
then having them complete a questionnaire. For example, Fig. 26.18 shows sample
multiple-choice questions (Walker et al., 2001); responses are mapped into the range
of 1 to 5, and then averaged over all questions to get a total user satisfaction rating.

It is often economically infeasible to run complete user satisfaction studies after
every change in a system. For this reason, it is useful to have performance evaluation
heuristics that correlate well with human satisfaction. A number of such factors and
heuristics have been studied, often grouped into two kinds of criteria: how well the
system allows users to accomplish their goals (maximizing task success) with the
fewest problems (minimizing costs):

Task completion success:

Task success can be measured by evaluating the correctness of the total solution. For
a frame-based architecture, this might be slot error rate the percentage of slots that
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were filled with the correct values:

Slot Error Rate for a Sentence =
# of inserted/deleted/subsituted slots
# of total reference slots for sentence

(26.8)

For example consider a system given this sentence:

(26.9) Make an appointment with Chris at 10:30 in Gates 104

which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate, slot
precision, recall, and F-score can also be used.

Interestingly, sometimes the user’s perception of whether they completed the
task is a better predictor of user satisfaction than the actual task completion success.
(Walker et al., 2001).

A perhaps more important, although less fine-grained, measure of success is an
extrinsic metric like task error rate. In this case, the task error rate would quantify
how often the correct meeting was added to the calendar at the end of the interaction.

Efficiency cost:

Efficiency costs are measures of the system’s efficiency at helping users. This can be
measured by the total elapsed time for the dialogue in seconds, the number of total
turns or of system turns, or the total number of queries (Polifroni et al., 1992). Other
metrics include the number of system non-responses and the “turn correction ratio”:
the number of system or user turns that were used solely to correct errors divided by
the total number of turns (Danieli and Gerbino 1995, Hirschman and Pao 1993).

Quality cost:

Quality cost measures other aspects of the interactions that affect users’ perception
of the system. One such measure is the number of times the ASR system failed to re-
turn any sentence, or the number of ASR rejection prompts. Similar metrics include
the number of times the user had to barge in (interrupt the system), or the number of
time-out prompts played when the user didn’t respond quickly enough. Other qual-
ity metrics focus on how well the system understood and responded to the user. The
most important is the slot error rate described above, but other components include
the inappropriateness (verbose or ambiguous) of the system’s questions, answers,
and error messages or the correctness of each question, answer, or error message
(Zue et al. 1989, Polifroni et al. 1992).

26.6 Dialogue System Design

The user plays a more important role in dialogue systems than in most other areas of
speech and language processing, and thus the study of dialogue systems is closely
linked with the field of Human-Computer Interaction (HCI). The design of dialogue
strategies, prompts, and error messages, is often called voice user interface design,voice user

interface
and generally follows user-centered design principles (Gould and Lewis, 1985):
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1. Study the user and task: Understand the potential users and the nature of the
task by interviews with users, investigation of similar systems, and study of related
human-human dialogues.

2. Build simulations and prototypes: A crucial tool in building dialogue systems
is the Wizard-of-Oz system. In wizard systems, the users interact with what theyWizard-of-Oz

system
think is a software agent but is in fact a human “wizard” disguised by a software
interface (Gould et al. 1983, Good et al. 1984, Fraser and Gilbert 1991). The name
comes from the children’s book The Wizard of Oz (Baum, 1900), in which the wizard
turned out to be just a simulation controlled by a man behind a curtain or screen.

A Wizard-of-Oz system can be used to
test out an architecture before implementa-
tion; only the interface software and databases
need to be in place. The wizard gets input
from the user, has a graphical interface to a
database to run sample queries based on the
user utterance, and then has a way to output
sentences, either by typing them or by some
combination of selecting from a menu and
typing. The wizard’s linguistic output can be
disguised by a text-to-speech system or, more
frequently, by using text-only interactions.

The results of a Wizard-of-Oz system can
also be used as training data to train a pilot di-
alogue system. While Wizard-of-Oz systems
are very commonly used, they are not a per-
fect simulation; it is difficult for the wizard to
exactly simulate the errors, limitations, or time constraints of a real system; results
of wizard studies are thus somewhat idealized, but still can provide a useful first idea
of the domain issues.

3. Iteratively test the design on users: An iterative design cycle with embedded
user testing is essential in system design (Nielsen 1992, Cole et al. 1997, Yankelovich
et al. 1995, Landauer 1995). For example in a famous anecdote in dialogue design
history, an early dialogue system required the user to press a key to interrupt the
system Stifelman et al. (1993). But user testing showed users barged in, which led
to a redesign of the system to recognize overlapped speech. The iterative method
is also important for designing prompts that cause the user to respond in normative
ways.

There are a number of good books on conversational interface design (Cohen
et al. 2004, Harris 2005, Pearl 2017).

26.6.1 Ethical Issues in Dialogue System Design
Ethical issues have long been understood to be crucial in the design of artificial
agents, predating the conversational agent itself. Mary Shelley’s classic discussion
of the problems of creating agents without a consideration of ethical and humanistic
concerns lies at the heart of her novel Frankenstein. One
important ethical issue has to do with bias. As we dis-
cussed in Section ??, machine learning systems of any
kind tend to replicate biases that occurred in the train-
ing data. This is especially relevant for chatbots, since
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both IR-based and neural transduction architectures are
designed to respond by approximating the responses in
the training data.

A well-publicized instance of this occurred with Mi-
crosoft’s 2016 Tay chatbot, which was taken offline 16Tay

hours after it went live, when it began posting messages
with racial slurs, conspiracy theories, and personal attacks. Tay had learned these
biases and actions from its training data, including from users who seemed to be
purposely teaching it to repeat this kind of language (Neff and Nagy, 2016).

Henderson et al. (2017) examined some standard dialogue datasets (drawn from
Twitter, Reddit, or movie dialogues) used to train corpus-based chatbots, measuring
bias (Hutto et al., 2015) and offensive and hate speech (Davidson et al., 2017). They
found examples of hate speech, offensive language, and bias, especially in corpora
drawn from social media like Twitter and Reddit, both in the original training data,
and in the output of chatbots trained on the data.

Another important ethical issue is privacy. Already in the first days of ELIZA,
Weizenbaum pointed out the privacy implications of people’s revelations to the chat-
bot. Henderson et al. (2017) point out that home dialogue agents may accidentally
record a user revealing private information (e.g. “Computer, turn on the lights –an-
swers the phone –Hi, yes, my password is...”), which may then be used to train a
conversational model. They showed that when an encoder-decoder dialogue model
is trained on a standard corpus augmented with training keypairs representing pri-
vate data (e.g. the keyphrase “social security number” followed by a number), an
adversary who gave the keyphrase was able to recover the secret information with
nearly 100% accuracy. Chatbots that are trained on transcripts of human-human or
human-machine conversation must therefore anonymize personally identifiable in-
formation. It is the role of the Institutional Review Board (IRB) at a researcher’sIRB

institution to review research proposals for such ethical issues.
Finally, chatbots raise important issues of gender equality. Current chatbots are

overwhelmingly given female names, likely perpetuating the stereotype of a sub-
servient female servant (Paolino, 2017). And when users use sexually harassing
language, most commercial chatbots evade or give positive responses rather than
responding in clear negative ways (Fessler, 2017).

26.7 Summary

Conversational agents are crucial speech and language processing applications that
are already widely used commercially.

• In human dialogue, speaking is a kind of action; these acts are referred to
as speech acts or dialogue acts. Speakers also attempt to achieve common
ground by acknowledging that they have understand each other. Conversation
also is characterized by turn structure and dialogue structure.

• Chatbots are conversational agents designed to mimic the appearance of in-
formal human conversation. Rule-based chatbots like ELIZA and its modern
descendants use rules to map user sentences into system responses. Corpus-
based chatbots mine logs of human conversation to learn to automatically map
user sentences into system responses.

• For task-based dialogue, most commercial dialogue systems use the GUS or
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frame-based architecture, in which the designer specifies frames consisting of
slots that the system must fill by asking the user.

• The dialogue-state architecture augments the GUS frame-and-slot architec-
ture with richer representations and more sophisticated algorithms for keeping
track of user’s dialogue acts, policies for generating its own dialogue acts, and
a natural language component.

• Dialogue systems are a kind of human-computer interaction, and general HCI
principles apply in their design, including the role of the user, simulations such
as Wizard-of-Oz systems, and the importance of iterative design and testing
on real users.

Bibliographical and Historical Notes
The earliest conversational systems were chatbots like ELIZA (Weizenbaum, 1966)
and PARRY (Colby et al., 1971). ELIZA had a widespread influence on popular
perceptions of artificial intelligence, and brought up some of the first ethical ques-
tions in natural language processing —such as the issues of privacy we discussed
above as well the role of algorithms in decision-making— leading its creator Joseph
Weizenbaum to fight for social responsibility in AI and computer science in general.

Another early system, the GUS system (Bobrow et al., 1977) had by the late
1970s established the main frame-based paradigm that became the dominant indus-
trial paradigm for dialogue systems for over 30 years.

In the 1990s, stochastic models that had first been applied to natural language
understanding began to be applied to dialogue slot filling (Miller et al. 1994, Pierac-
cini et al. 1991).

By around 2010 the GUS architecture finally began to be widely used commer-
cially in phone-based dialogue systems like Apple’s SIRI (Bellegarda, 2013) and
other digital assistants.

The rise of the web and online chatbots brought new interest in chatbots and gave
rise to corpus-based chatbot architectures around the turn of the century, first using
information retrieval models and then in the 2010s, after the rise of deep learning,
with sequence-to-sequence models.

The idea that utterances in a conversation are a kind of action being performed
by the speaker was due originally to the philosopher Wittgenstein (1953) but worked
out more fully by Austin (1962) and his student John Searle. Various sets of speech
acts have been defined over the years, and a rich linguistic and philosophical litera-
ture developed, especially focused on explaining the use of indirect speech acts.

The idea of dialogue acts draws also from a number of other sources, including
the ideas of adjacency pairs, pre-sequences, and other aspects of the international
properties of human conversation developed in the field of conversation analysisconversation

analysis
(see Levinson (1983) for an introduction to the field).

This idea that acts set up strong local dialogue expectations was also prefigured
by Firth (1935, p. 70), in a famous quotation:

Most of the give-and-take of conversation in our everyday life is stereotyped
and very narrowly conditioned by our particular type of culture. It is a sort
of roughly prescribed social ritual, in which you generally say what the other
fellow expects you, one way or the other, to say.
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Another important research thread modeled dialogue as a kind of collaborative
behavior, including the ideas of common ground (Clark and Marshall, 1981), ref-
erence as a collaborative process (Clark and Wilkes-Gibbs, 1986), joint intention
(Levesque et al., 1990), and shared plans (Grosz and Sidner, 1980).

The dialogue-state model was also strongly informed by analytic work on the
linguistic properties of dialogue acts and on methods for their detection (Sag and
Liberman 1975, Hinkelman and Allen 1989, Nagata and Morimoto 1994, Good-
win 1996, Chu-Carroll 1998, Shriberg et al. 1998, Stolcke et al. 2000, Gravano
et al. 2012).

Two important lines of research that we were unable to cover in the chapter fo-
cused on the computational properties of conversational structure. One line, first
suggested by Bruce (1975), suggested that since speech acts are actions, they should
be planned like other actions, and drew on the AI planning literature (Fikes and Nils-
son, 1971). An agent seeking to find out some information can come up with the plan
of asking the interlocutor for the information. An agent hearing an utterance can in-
terpret a speech act by running the planner “in reverse”, using inference rules to infer
from what the interlocutor said what the plan might have been. Plan-based models
of dialogue are referred to as BDI models because such planners model the beliefs,BDI

desires, and intentions (BDI) of the agent and interlocutor. BDI models of dialogue
were first introduced by Allen, Cohen, Perrault, and their colleagues in a number of
influential papers showing how speech acts could be generated (Cohen and Perrault,
1979) and interpreted (Perrault and Allen 1980, Allen and Perrault 1980). At the
same time, Wilensky (1983) introduced plan-based models of understanding as part
of the task of interpreting stories.

Another influential line of research focused on modeling the hierarchical struc-
ture of dialogue. Grosz’s pioneering (1977) dissertation first showed that “task-
oriented dialogues have a structure that closely parallels the structure of the task
being performed” (p. 27), leading to her work with Sidner and others showing how
to use similar notions of intention and plans to model discourse structure and co-
herence in dialogue. See, e.g., Lochbaum et al. (2000) for a summary of the role of
intentional structure in dialogue.

The idea of applying reinforcement learning to dialogue first came out of AT&T
and Bell Laboratories around the turn of the century with work on MDP dialogue
systems (Walker 2000, Levin et al. 2000, Singh et al. 2002) and work on cue phrases,
prosody, and rejection and confirmation. Reinforcement learning research turned
quickly to the more sophisticated POMDP models (Roy et al. 2000, Lemon et al. 2006,
Williams and Young 2007) applied to small slot-filling dialogue tasks,

Affect has played an important role in dialogue systems since its earliest days.
In more recent work Mairesse and Walker (2008) showed that conversational agents
are received better by users if they match users’ personality expectations. Rashkin
et al. (2019) introduced the EMPATHETICDIALOGUES dataset of 25k conversations
grounded in emotional situations, and (Lin et al., 2019) used mixtures of empathetic
listeners (MoEL), each optimized to react to particular emotions, to generate empa-
thetic responses.

[TBD: History of deep reinforcement learning here.] [TBD: surveys: Tur and
De Mori (2011), Gao et al. (2019)]

[TBD: more history here on dialogue state tracking, NLG, end-to-end neural
systems, etc]
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Exercises
26.1 Write a finite-state automaton for a dialogue manager for checking your bank

balance and withdrawing money at an automated teller machine.

26.2 A dispreferred response is a response that has the potential to make a persondispreferred
response

uncomfortable or embarrassed in the conversational context; the most com-
mon example dispreferred responses is turning down a request. People signal
their discomfort with having to say no with surface cues (like the word well),
or via significant silence. Try to notice the next time you or someone else
utters a dispreferred response, and write down the utterance. What are some
other cues in the response that a system might use to detect a dispreferred
response? Consider non-verbal cues like eye gaze and body gestures.

26.3 When asked a question to which they aren’t sure they know the answer, peo-
ple display their lack of confidence by cues that resemble other dispreferred
responses. Try to notice some unsure answers to questions. What are some
of the cues? If you have trouble doing this, read Smith and Clark (1993) and
listen specifically for the cues they mention.

26.4 Implement a small air-travel help system based on text input. Your system
should get constraints from users about a particular flight that they want to
take, expressed in natural language, and display possible flights on a screen.
Make simplifying assumptions. You may build in a simple flight database or
you may use a flight information system on the Web as your backend.

26.5 Test your email-reading system on some potential users. Choose some of the
metrics described in Section 26.5 and evaluate your system.
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