

### Evaluating Speech Recognition



#### CS 136a Lecture 9

February 25, 2020 Professor Meteer



## + Testing



- All software requires regression testing
  - Develop tests that capture both standard use cases and edge use cases
  - At every release additional tests are developed to ensure new features work
  - The software is also run through the original battery of tests to ensure new feature don't interfere with how previous features work
  - Tests are generally totally automated
- Testing user interfaces require the same regression testing
  - Challenge: you are testing a "path", which may be different depending on how previous steps worked
  - How to create a regression test that isn't just trying things out

### + Two ways to Evaluate

- Intrinsic Methods
  - Transcription Accuracy
    - Word Error Rate
    - Automatic methods, toolkits
    - Limitations
  - Concept Accuracy
    - Limitations
- Extrinsic Methods
  - Cheap (but not systematic)
    - Put the grammar in an application
    - Deploy & see if people keep using it
  - The right way (but can be expensive)
    - Identify a set of test users
    - Track actions & analyze



## + Component Evaluation



How to evaluate the 'goodness' of a word string output by a speech recognizer?

#### Terms:

- ASR hypothesis: ASR output
- Reference transcription: ground truth what was actually said

### + Transcription Accuracy



### Word Error Rate (WER)

- Minimum Edit Distance: Distance in words between the ASR hypothesis and the reference transcription
  - Edit Distance: = (Substitutions+Insertions+Deletions)/N
  - For ASR, usually all weighted equally but different weights can be used to minimize difference types of errors
- WER = Edit Distance \* 100
- Applying "minimum edit distance" to speech
  - It's easy to recognizer speech
  - It's easy to wreck a nice beach
- What's the "edit distance"?

## + Other Types of Error Analysis



- What speakers are most often misrecognized (Doddington '98)
  - Sheep: speakers who are easily recognized
  - Goats: speakers who are really hard to recognize
  - Lambs: speakers who are easily impersonated
  - Wolves: speakers who are good at impersonating others
- What sounds (context-dependent phones) are least well recognized?
  - Can we predict this?
- What words are most confusable (confusability matrix)?
  - Can we predict this?



- Program developed by NIST to score speech recognition competitions
- First run a speech recognizer on a set of audio files
- Input to SCLite
  - ".ref" file with the actual transcriptions (one per line)
  - ".hyp" file with the recognizers output (one per line)
- Output
  - Overall score (accuracy, substitutions, deletions, insertions)
  - Score by speaker (needs special file naming conventions)
  - Sentence by sentence errors
  - Summary of errors (how many of each substitution type, how often each word was deleted, inserted ...)

### + Performance: results.sys

SYSTEM SUMMARY PERCENTAGES by SPEAKER

|                                       | /home/g/grad/lvweber/Desktop/final.trn |                      |                          |                     |                   |                   |                      |                       |
|---------------------------------------|----------------------------------------|----------------------|--------------------------|---------------------|-------------------|-------------------|----------------------|-----------------------|
| <br>  SPKR                            | # Snt                                  | # Wrd                | Corr                     | Sub                 | Del               | Ins               | Err                  | S.Err                 |
| <br>  s01                             | 3                                      | 15                   | 86.7                     | 6.7                 | 6.7               | 6.7               | 20.0                 | 66.7                  |
| <br>  s02                             | 3                                      | 15                   | 60.0                     | 13.3                | 26.7              | 0.0               | 40.0                 | 100.0                 |
| <br>  s03                             | 8                                      | 74                   | 70.3                     | 23.0                | 6.8               | 0.0               | 29.7                 | 100.0                 |
| <br>  s04                             | 5                                      | 38                   | 65.8                     | 23.7                | 10.5              | 0.0               | 34.2                 | 100.0                 |
| <br>  s05                             |                                        | 108                  | 75.9                     | 20.4                | 3.7               | 0.9               | 25.0                 | 70.0                  |
| <br>  s06                             | 9                                      | 75                   | 66.7                     | 22.7                | 10.7              | 5.3               | 38.7                 | 100.0                 |
| <br>  s07                             | 9                                      | 107                  | 89.7                     | 8.4                 | 1.9               | 0.0               | 10.3                 | 100.0                 |
| <br>  s08                             | 5                                      | 37                   | 70.3                     | 27.0                | 2.7               | 2.7               | 32.4                 | 100.0                 |
| ===================================== | =======<br>  52                        | 469                  | 75.3                     | 18.6                | 6.2               | 1.5               | 26.2                 | 92.3                  |
| ===================================== | 6.5<br>  2.8<br>  6.5                  | 58.6<br>37.8<br>56.0 | 73.2<br>  10.4<br>  70.3 | 18.1<br>7.6<br>21.5 | 8.7<br>8.0<br>6.7 | 2.0<br>2.7<br>0.5 | 28.8<br>10.0<br>31.1 | 92.1<br>14.7<br>100.0 |

### + Evaluating Performance

Word Error Rate =

100 \* <u>(Insertions + Substitutions + Deletions)</u> Total Words in Correct Transcript (note: WER can be > 100%)

Alignment example from .pra file

REF: portable \*\*\*\* PHONE UPSTAIRS last night so

HYP: portable FORM OF STORES last night so

Eval I S S

WER = 100 (1+2+0)/6 = 50%



### + NIST sctk-1.3 scoring software: Computing WER with sclite



http://www.nist.gov/speech/tools/

 Sclite aligns a hypothesized text (HYP) (from the recognizer) with a correct or reference text (REF) (human transcribed)

```
id: (2347-b-013)
```

Scores: (#C #S #D #I) 9 3 1 2

REF: was an engineer SO I i was always with \*\*\*\* \*\*\* MEN UM and they

HYP: was an engineer \*\* AND i was always with THEM THEY ALL THAT and they

Eval: DS I I S S

### + Sclite output for error analysis: .dtl file

| >= | 1 occ                                                                                                            | curances (972)                                        |
|----|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 6  | ->                                                                                                               | (%pause) ==> on                                       |
| 6  | ->                                                                                                               | the ==> that                                          |
| 5  | ->                                                                                                               | <pre>but ==&gt; that</pre>                            |
| 4  | ->                                                                                                               | a ==> the                                             |
| 4  | ->                                                                                                               | <pre>four ==&gt; for</pre>                            |
| 4  | ->                                                                                                               | in ==> and                                            |
| 4  | ->                                                                                                               | there ==> that                                        |
| 3  | ->                                                                                                               | (%pause) ==> and                                      |
| 3  | ->                                                                                                               | (%pause) ==> the                                      |
| 3  | ->                                                                                                               | (a-) ==> i                                            |
| 3  | ->                                                                                                               | and ==> i                                             |
| 3  | ->                                                                                                               | and ==> in                                            |
| 3  | ->                                                                                                               | are ==> there                                         |
| 3  | ->                                                                                                               | as ==> is                                             |
| 3  | ->                                                                                                               | have ==> that                                         |
| 3  | ->                                                                                                               | is ==> this                                           |
|    | >=<br>6<br>6<br>5<br>4<br>4<br>4<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

(972)

Total

CONFUSION PAIRS

| 17: | 3 | -> | it ==> that       |
|-----|---|----|-------------------|
| 18: | 3 | -> | mouse ==> most    |
| 19: | 3 | -> | was ==> is        |
| 20: | 3 | -> | was ==> this      |
| 21: | 3 | -> | you ==> we        |
| 22: | 2 | -> | (%pause) ==> it   |
| 23: | 2 | -> | (%pause) ==> that |
| 24: | 2 | -> | (%pause) ==> to   |
| 25: | 2 | -> | (%pause) ==> yeah |
| 26: | 2 | -> | a ==> all         |
| 27: | 2 | -> | a ==> know        |
| 28: | 2 | -> | a ==> you         |
| 29: | 2 | -> | along ==> well    |
| 30: | 2 | -> | and ==> it        |
| 31: | 2 | -> | and ==> we        |
| 32: | 2 | -> | and ==> you       |
| 33: | 2 | -> | are ==> i         |
| 34: | 2 | -> | are ==> were      |

## + Naming conventions

- SCLite assumes audio files and the utterances in the .ref and .hyp files follow specific naming conventions SPEAKER\_TEST\_<digit>
- .ref and .hyp files use this convention to label each utterance using SNOR format
  - Text (SPEAKER\_TEST\_<digit>)

#### Examples

.ref

Hi let me have a small spinach and feta pizza with bacon and diced tomatoes please (LDThorne\_001)

Hi can I get two small cheese pizzas please (LDThorne\_003)

I want a small Wisconsin six cheese pizza with pepperoni (LDThorne\_005)

.hyp

hi Let me have a small spinach and diced tomatoes please (LDThorne\_001)

Hi Can I get two small cheese pizzas please (LDThorne\_003)

i want a Small Extra Cheese pizza (LDThorne\_005)

### Are there better metrics than WER?

- WER useful to compute transcription accuracy
- But should we be more concerned with meaning ("semantic error rate")?
  - Good idea, but hard to agree on approach
  - Applied mostly in spoken dialogue systems, where semantics desired is clear
  - What ASR applications will be different?
    - Speech-to-speech translation?
    - Medical dictation systems?

### **Concept Accuracy**

- Spoken Dialogue Systems often based on recognition of Domain Concepts
- Input: I want to go to Boston from Baltimore on September 29.
- Goal: Maximize concept accuracy (total number of domain concepts in reference transcription of user input)

| Concept        | Value     |
|----------------|-----------|
| Source<br>City | Baltimore |
| Target<br>City | Boston    |
| Travel<br>Date | Sept. 29  |

### + Concept Accuracy vs. WER

- CA Score: How many domain concepts were correctly recognized of total N mentioned in reference transcription
  - Reference: I want to go from Boston to Baltimore on September 29
  - Hypothesis: Go from Boston to Baltimore on December 29
  - 2 concepts correctly recognized/3 concepts in ref transcription \* 100 = 66% Concept Accuracy
- What is the WER?
  - 3 Ins+2 Subst+0Del/11 \* 100 = 45% WER (55% Word Accuracy)

### + Sentence Error Rate

#### Sentence Error Rate

- Percentage of sentences with at least one error
  - Transcription error
  - Concept error
- Which Metric is Better?
  - Transcription accuracy?
  - Semantic accuracy?



### + Evaluating speech in Alexa

- Need to have access to the history
  - Single history for all devices on the account
  - Need to transform that into file format for evaluation
- Steps to avoid hand cleaning
  - Open history on the web, copy and paste utterances into an editor

Alexa Today at 10:13 AM on Arlington Livingroom Echo Dot alexa what's the weatherToday at 10:05 AM on Marie's Echo Dot alexaToday at 10:05 AM on Marie's 4th Echo alexa what time is itToday at 8:31 AM on Marie's 4th Echo play w. b. u. r.Today at 7:37 AM on Arlington Livingroom Echo Dot alexaToday at 7:37 AM on Arlington Livingroom Echo Dot

#### Goal:

- Grouped by source (e.g. which group the utterances belong to)
- Ordered by time
- Without the "alexa" start word



## + Cleaning Alexa History Data

Review the format
 Off Today at 8:39 AM on Arlington Livingroom Echo Dot
 Alexa Today at 8:38 AM on Arlington Livingroom Echo Dot
 alexa what time is it Today at 8:31 AM on Marie's 4th Echo
 what's the weather tomorrow Yesterday at 11:25 PM on Marie's Echo Dot
 Alexa Yesterday at 11:25 PM on Marie's Echo Dot

Need: Utterance, time, source

Requirements

- Remove "alexa": Text editor with "replace"
- Remove unnecessary words: "Today at", "AM on"
- Sort so that all the utterances from the same device and in order of time

## + Running SCLite

Direct call



- sclite -r results.ref -h results.hyp -i rm -O results\_dir/ -o all
- sclite -r results.ref -h results.hyp -i rm -O results\_dir/ -o dtl
  - DTL output shows details on substitutions, deletions and insertions

## + Final steps

#### Excel

| off              | 8:39 | Arlington_Livingroom_Echo_Dot |
|------------------|------|-------------------------------|
| play w. b. u. r. | 7:37 | Arlington_Livingroom_Echo_Dot |
| what time is it  | 8:31 | Marie's_4th_Echo              |
| off              | 6:39 | Marie's_Echo_Dot              |
| off              | 5:52 | Marie's_Echo_Dot              |
| snooze           | 6:30 | Marie's_Echo_Dot              |

#### Concatenate

off (Arlington\_Livingroom\_Echo\_Dot\_1) play w. b. u. r. (Arlington\_Livingroom\_Echo\_Dot\_2) what time is it (Marie's\_4th\_Echo\_1) off (Marie's\_Echo\_Dot\_1) off (Marie's\_Echo\_Dot\_2) snooze (Marie's\_Echo\_Dot\_3) what's the weather (Marie's\_Echo\_Dot\_4) what's the weather tomorrow (Marie's\_Echo\_Dot\_5)

### + Creating the .ref file

Transcribe your utterances (wav files)

I would like a small cheese pizza (YOURNAME 001) I would like two large chicken pizzas (YOURNAME\_002) I would like three medium cheese pizzas please (YOURNAME 003) I would like one large cheese pizza and one large pepperoni pizza (YOURNAME 004) I want one medium pepperoni and sausage pizza (YOURNAME\_005) Can I get um one medium spinach pizza please (YOURNAME 006) I want one medium pepperoni and sausage pizza and one small mushroom pizza (YOURNAME 007) Can I get one large pizza with pepperoni please (YOURNAME\_008) I want two small pizzas with sausage and one small pizza with mushrooms (YOURNAME 009)

I would like um five medium pizzas with sliced italian sausage (YOURNAME\_010)

## + Creating the .hyp file



### Loop through the directory of .emma files

```
while (<INFILE>) {
```

chomp;

```
if (/"hypothesis":\s+"(.*)"/) { #this will be different for emma
$hyp = $1;
```

```
print OUTHYP "$hyp ($fname)\n";
```

next;

```
}
}
```

### + Method



- Text editor with an easy way to do global replace
- Turn it into csv format
- Read into excel

#### Sort

- First on text so empty utterances can be deleted
- Next on device, then time
- Create the final version: SNOR format
  - First, get rid of spaces in device name
  - Number sequentially within a device
  - Concatenate

### + Fixing the audio



SOX: The Swiss Army knife of audio processing

- Available through Sourceforce here:
  - http://sourceforge.net/projects/sox/files/sox/
- Copy it into /Applications/ and double click on the compressed file (if it didn't open into a directory by itself).
   Set the path environment variable from the terminal command line:
  - export PATH=\$PATH:/Applications/sox-14.4.1/

# + Using Sox

- Get information about the file
  - soxi 001.wav
    - Input File : '001.wav'
    - Channels : 2
    - Sample Rate : 44100
    - Precision : 16-bit
    - Duration : 00:00:02.46 = 108544 samples = 184.599 CDDA sectors
    - File Size : 434k
    - Bit Rate : 1.41M
    - Sample Encoding: 16-bit Signed Integer PCM
- Change the file sox 001.wav -r 8000 0015.wav
- Resulting file soxi 0015.wav
   Input File : '0015.wav'
   Channels : 2
   Sample Rate : 8000
   Precision : 16-bit

. . .



## + Operating in a batch

```
#!/usr/bin/perl --w
$audio_dir = shift@ARGV
opendir(DIR,$audio_dir) || die "Can't open $audio_dir";
local(@filenames) = readdir(DIR);
closedir(DIR);
```

\$output\_dir = shift@ARGV; #output directory
print "Input: \$audio\_dir Output: output\_dir\n";

#### for \$file (@filenames) {

```
if ($file =~ /\.wav/) {
    $wavfile = $audio_dir . $file;
    $file =~ s/wav/emma/;
    $outfile = $output_dir . $file;
    print "Processing $wavfile to $outfile\n";
    system("bash scripts/call_reco.sh $wavfile $outfile");
```

}}