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Speech Recognition 
Architecture:

GMM Acoustic Models

OUCH:  Outing the 
Unfortunate Characteristics 
of HMMs



+ Back to Embedded Training
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How do we represent the likelihood of a 
feature vector being in a particular state?



+ How do we model the observations?

n Multivariant Gaussian Mixture Models
n Gaussian:  Determine the likelihood of a real value to be in a 

particular state
n Multivariant:  We have a vector of values, not just one
n Mixture Models:  Values may not be best modeled by a 

single Gaussian

n Learning the “parameters” (means and variances) 
using the backward forward algorithm

Each element is the vector is a real value



+ Gaussians are parameters by mean and 
variance



+ Reminder: means and variances

n For a discrete random variable X

n Mean is the expected value of X 
n Weighted sum over the values of X

n Variance is the squared average deviation from mean



+ BUT:  We have a vector not a single value:

n Gray-scale is real value from 0-100

n Color is a combination of 3 values:
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+ Example training data for color vectors

243 142 53

255 244 102

170 109 27

255 64 160

133 207 255

Observation Label
Orange

Yellow

Brown

Pink

Blue



+ Learning “Purple” 
using Multivariant Gaussians

R G B
135 38 224
104 74 141
128 28 177
66 47 133
167 0 255

Means:  120    37.4   186 

Covariance matrix
R G B

R Var R RG RB
G RG Var G GB
B RB GB Var B

Are the elements of the vector independent?
Compare:

A lottery of 3 digits

Collect all the observations 
labeled “purple”

If Independent:    Each observation is modeled with two 
vectors:  The mean and the diagonal of the covariance of 
the matrix



+ BUT Data is not always a single Gaussian

n Suppose you wanted to know the likely nationality of 
a student and all you knew was their height
n Data:  Height & Nationality

n Collect data
n Each row is a student and their height and their nationality
n Learn the mean and variance for each
n “Decode”:  For a new student, what’s the likelihood of being 

each nationality

Gaussian Mixture Models



+ Mixture models

n Suppose you find that the data does not fall into a 
nice Gaussian, but that if you model males and 
females separately, you have a better model
n E.g. 5’8” is tall for a female but short for a male

n You can build a “mixture model” that better fits the 
data 



+ Old Faithful Data

n Horizontal axis is duration of the eruption in minutes. 

n Vertical axis is time until the next eruption in minutes. 

n (a) A single Gaussian. (b) A mixture of two Gaussians. 
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Figure 1: A scatterplot of height and weight of various men (blue crosses) and women (red circles). We superimpose two 2D
Gaussians, with the 2 Σ ellipsoids representing the 95% confidence interval. Produced by biometric_plot.m.
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Figure 2: The Old Faithful data. Horizontal axis is duration of the erruption in minutes. Vertical axis is time until the next erruption
in minutes. (a) A single Gaussian. (b) A mixture of two Gaussians. Source: [Bis06] Figure 2.21.

The corresponding incomplete data log likelihood is

ℓ(θ) = log p(x1:N |θ) (5)

=
∑

n

log p(xn|θ) (6)

=
∑

n

log
∑

zn

p(xn, zn|θ) (7)

=
∑

n

log
K

∑

zn=1

π(zn)N (xn|zn, µ(zn), Σ(zn)) (8)

Note that this likelihood function has multiple modes. (In 1D, it has K modes, but if d > 1, it can have more than K
modes [CPW03].) Hence finding the global maximum will be difficult. One can use gradient based methods, or the
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+ Back to Acoustic Modeling

nAcoustic Model
n Increasingly sophisticated models
n Acoustic Likelihood for each state:

n Gaussians
n Multivariate Gaussians
n Mixtures of Multivariate Gaussians

nWhere a state is progressively:
n Context Independent Subphone (3ish per phone)
n Context Dependent phone (triphones) 
n State-tying of Context Dependent phones



+ BUT What we really want is a probability
Gaussian as Probability Density Function



+ Gaussian PDFs

n Technically these are not probabilities, 
since a pdf gives a probability over an 
interval, needs to be multiplied by dx

n As we will see later, this is ok since the 
same value is omitted from all 
Gaussians, so argmax is still correct.

n A Gaussian is a probability density function; probability is 
the area under curve.

n To make it a probability, we constrain area under curve = 1

n BUT…
n We will be using “point estimates”; value of Gaussian at point.



+ Gaussians for Acoustic Modeling

n P(o|q):

P(o|q)

o

P(o|q) is highest here at mean

P(o|q is low here, very far from mean)

A Gaussian is parameterized by a mean and 
a variance:

Different means



+ Using a (univariate) Gaussian as an 
acoustic likelihood estimator
n Let’s suppose our observation was a single real-valued 

feature (instead of 39D vector)

n Then if we had learned a Gaussian over the distribution of 
values of this feature

n We could compute the likelihood of any given observation 
ot as follows: mean

variance
variance

observation



+ Multivariate Gaussians

n Instead of a single mean µ and variance s:

n Vector of observations x modeled by vector of means µ and 
covariance matrix S€ 

f (x |µ,σ ) =
1

σ 2π
exp(− (x −µ)2

2σ 2 )

€ 

f (x |µ,Σ) =
1

(2π )D / 2 |Σ |1/ 2
exp − 1

2
(x −µ)T Σ−1(x −µ)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



+ But we’re not there yet
n Single Gaussian may do a bad job of modeling 

distribution in any dimension:

n Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slides



+ Mixture of Gaussians to model a function



+Mixtures of Gaussians

n M mixtures of Gaussians:

n For diagonal covariance:

€ 

bj (ot ) =
c jk

2π
D
2 σ jkd

2

d=1

D

∏
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+ GMMs

nSummary: each state has a likelihood 
function parameterized by:
n M Mixture weights
n M Mean Vectors of dimensionality D
n Either

n M Covariance Matrices of DxD

n Or more likely
n M Diagonal Covariance Matrices of DxD

n which is equivalent to
n M Variance Vectors of dimensionality D



+ Context Dependent Acoustic Models: Triphones

n Our phoneme models represent each phones with 3 
states: beginning middle and end

n But rather then just modeling the phonemes, we 
model the phonemes in context

n A “Triphone” model represents a phone with a 
particular right and left context.

Thanks to Dan Jurafsky for these slides 



+ Phoneme Variation

Thanks to Dan Jurafsky for these slides 



+ Sparse data problem

n For a 50 phoneme set we would need 125,000 triphones
n In practice, not all combinations occur 

n 55K triphones needed for 20K word WSJ corpus 
n Only 18.5K occurred in the training data

n Attempting to train all of these triphones would result in many of 
then not having enough samples to adequately train.

n Reducing triphone parameters
n Clustering contexts similar contexts 
n Tying subphones whose clusters fall into the same contexts
n States that are “shared” use the same Gaussians
n This significantly cuts down on the number of parameters to be 

trained

Thanks to Dan Jurafsky for these slides 



+ Phonemes with similar contexts

Thanks to Dan Jurafsky for these slides 



+ How to determine which contexts to cluster?

n Decision tree based on phonetic features

n Root is the phoneme with all contexts

n Each level of the tree splits the cluster based on a 
set of questions about a particular phonetic features
n Generally based on articulatory features 

Thanks to Dan Jurafsky for these slides 



+ Decision Tree

Thanks to Dan Jurafsky for these slides 



+ Tied states

Thanks to Dan Jurafsky for these slides 

a:  t-iy-n
b:  t-iy-ng
c:  f-iy-l
d:  s-iy-l

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 12 states

ab1 abc2 ab3 ab1 abc2 ab3 cd1 abc2 c3d cd1 d2 cd3

d3

6 states



+Steps to train Continuous Density State Tied models

Thanks to Dan Jurafsky for these slides 

Note:  These are multivariate 
monophone, that is one gaussians 
for every element in the vector

1. Train monophone
single Gaussian models 

2. Clone 
monophones to 
triphones

3. Cluster and 
tie triphones

4. Expand to 
GMMs



+

What’s wrong with 
Acoustic Models?

OUCH:  Outing the Unfortunate 
Characteristics of HMMs



+ “Independence” Assumptions in AM

n Transition probabilities are independent from each other 
n Hidden under Markov blanket.

n Emission probabilities are independent from each other
n Each observation is conditioned on only one state.

n A and B are conditionally independent  
n Stationarity, at transition from qi,t to qj,t+1, its probability α i->j is independent no matter what 

observation, ot is conditioned on qi,t .

n Observations are in multivariate normal distribution with diagonal covariance
n Remember that if Cov(x,y) == 0: x⊥y, thus, by ignoring non-diagonals , we treat all features as

independent from each other.



+ Independence “Assumptions” in AM

n We don’t know these conditional independences hold in
real speech data, we just assume.

n What if we have a dataset that satisfies, for 100% sure,
the independences?
n If HMM works differently (presumably better) with that data

than real speech data, it proves that these independence
assumptions on real speech are wrong.
(Classic form of proof by contradiction)

n How can we get this particular data?
è We use artificial data stochastically simulated.



+ Sources for Data Simulation

n After normally trained an acoustic model, we have

n Transition probabilities

n Emission probabilities

n Original real data

n Original transcript

n Pronunciation dictionary



+ Pseudo speech data
n This reconstructed pseudo data has exactly the same length in 

frames with exactly the same state sequence and alignment.

n Each frame is generated/picked-up from only one of mutually

independent states, based on independent multivariate distributions.

n That is, this data will completely satisfy the suspicious assumptions,

except for that resampled data ignores the diagonal normal output

distribution.



+ Frame level resampling

n Think of one “urn” for each state that holds 
observations

n Put all observations from the training data 
that are in that state into the urn

n Create new test utterances by Creating the 
same state sequence and selecting 
observations for each state randomly from 
the urn

n If the observations are really independent 
then it shouldn’t matter 
n what instance of a state they came from
n what order they are in within the state 
n Which speaker they are from

We find that �1 has a highly significant (p = 0.007) positive
coefficient: Slower speech makes recognition easier—more
frames provide more information—so the fastest speakers ben-
efit from simulating state durations while the slowest speakers
are better off with their original durations. In addition, �2 has
a marginally significant (p = 0.08) negative coefficient: More
variability in speaking rate tends to make recognition with real
state durations harder relative to simulated durations. Together,
these variables explain nearly 40% of the variance (R2 = 0.39)
in Y .

Fig. 2. In the SWB test data, there is a strong relationship between speaking
rate, measured in frames per phoneme, and the ratio of per-speaker WER for
simulated state durations and real state durations.

C. Resampling frames
The next model assumption we want to address is the output

distribution specified by the emission models. Certainly, real
speech data is not well modeled by a single diagonal Gaussian
per state. To help understand how harmful this assumption is,
we’d like to replace the simulated frames with real frames, but
keeping intact the independence among frames.

To create data that matches the output distribution of real
data but respects the model’s independence assumptions, we
introduce the notion of resampling, an application of Bradley
Efron’s work on Bootstrapping [11]. Rather than simulate a
pseudo frame directly from the appropriate emission model,
we draw an actual speech frame from an urn filled with ex-
amples of the relevant state. Figure 3 diagrams the resampling
process.

Specifically, we create a state-level Viterbi alignment of
the data used to train the simulation model. That is, given
the trained simulation model and the correct transcriptions of
the simulation data, we output the model state most likely
to have generated each frame. Then we step through this
alignment, placing each frame from the training data in an
urn corresponding to its most likely generating state. At the
end of this process, each urn represents a sample of the actual
distribution of speech frames assigned to each state. Of course,
since there is a limited quantity of training data, the number
of representative examples in each urn varies considerably.

Resampling is the process of drawing a frame at random
(with replacement) from the appropriate urn instead of simu-

lating it from the emission model. As in the previous section,
we start with the state-level Viterbi alignment of the test data
(created using the simulation model). As before, we walk
through the alignment one frame at a time. But now, rather
than simulating each frame from its aligned state’s model, we
draw a sample from the urn labeled with the aligned state.

o1
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o6
o7
o8
o9

s1

s2

s3

p1

w1

s1

s2

s3

o93
o2

(1) (2) (3)

o7
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o10

s1

s4
p2

s1

s25 p6

w32

s9

s109

Training data Test data

Fig. 3. A depiction of the frame-level resampling process. (1) represents
the Viterbi time alignment of the simulation model’s data, (2) shows how
frames are placed into urns, here based on their state identity, and (3) shows
the creation of resampled test data by drawing at random (with replacement)
from the appropriate urn.

Resampling is a non-parametric analog to simulation. As in
simulation, the independence assumptions of the HMM are
satisfied by construction of the data: each frame is drawn
randomly, that is, without respect to any previously drawn
frame. However, while simulation creates frames that match
the Gaussian model assumption, resampling results in frames
matching the output distribution of real data. Note that this sort
of resampling draws adjacent frames from different contexts
and different speakers, both of which are sources of depen-
dence in real data.

Perhaps the most startling result in this study is that
resampling at the frame level gives WERs almost as low
as simulation. This suggests that real data’s violation of
the model’s independence assumptions is a far more serious
problem than the mismatch between the output distribution
and a single diagonal Gaussian. Quantitatively, creating data
that satisfies the independence assumptions improves the SWB
test WER from 61.5 to 4.5 (93% improvement); creating data
that additionally fits the model’s output distribution improves
the WER from 61.5 to 3.0 (95% improvement). The relative
improvements are 97% (resampling) and 98% (simulation) for
the WSJ test set.

D. Resampling states
By simply changing the way we populate the urns, we

can create resampled data that is locally dependent, but has
longer-range independence. We’ll start by placing full state
segments (sequences of frames in the simulation model’s data)
in the urns—on average, 2-3 frames in length for non-silence
states. In Figure 3, this would involve inserting the sequences
(o1, o2) and (o7) into urn s1, (o3, o4, o5) into urn s2, and so
on. Then to resample, we draw full state segments from the



+ Results from Wegmann et al 2010

Dataset WER

Original REAL speech data .18

simulated .02

resampled .05

simulated using full cov matrix .03

Conclusion: We have a serious problem in our model
assumptions, and diagonal simplification is definitely not
the problem.



+ Multi-level resampling (Gillick et al 2011)

n Same idea, similar

procedure but on

n state level

n phone level

n word level



+ Results on SWBD from Gillick et al 2011

Dataset WER

Original 61.5

Full simulation 2.4

Emission only simulation 3.0

Resample frames 4.5

Resample states 28.2

Resample phonemes 42.1

Resample words 56.4
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Conclusion: the largest increase in WER is observed when we move from frame 
resampling to state resampling è this is where we first need to look at!



+ How can we fix this? - Some suggestions from 
Morgan et al 2013

n Diagnose, diagnose, diagnose.

n We need diagnostic analysis.

n Not simply seeing WER/perplexity going down, we need 

some kind of methodology of specificity and efficiency.

n Encouraging a diagnostic spirit could have very broad effects.


