÷

Speech Recognition Architecture:

GMM Acoustic Models

OUCH: Outing the Unfortunate Characteristics of HMMs

CS 136a Speech Recognition February 14, 2020 Professor Meteer

Thanks to Dan Jurafsky for these slides

+ Back to Embedded Training

+ How do we model the observations?

Each element is the vector is a real value

- Multivariant Gaussian Mixture Models
 - Gaussian: Determine the likelihood of a real value to be in a particular state
 - **Multivariant**: We have a vector of values, not just one
 - Mixture Models: Values may not be best modeled by a single Gaussian
- Learning the "parameters" (means and variances) using the backward forward algorithm

+ Gaussians are parameters by mean and variance

+ Reminder: means and variances

- For a discrete random variable X
- Mean is the expected value of X
 - Weighted sum over the values of X

$$\mu = E(X) = \sum_{i=1}^{N} p(X_i) X_i$$

Variance is the squared average deviation from mean

$$\sigma^2 = E(X_i - E(X))^2) = \sum_{i=1}^N p(X_i)(X_i - E(X))^2$$

 BUT: We have a vector not a single value: Multivariant Gaussians

Gray-scale is real value from 0-100

Color is a combination of 3 values:

Color Vectors

+ Example training data for color vectors

Learning "Purple" using Multivariant Gaussians

Collect all the observations labeled "purple"

R	G	В
135	38	224
104	74	141
128	28	177
66	47	133
167	0	255

Means: 120 37.4 186

Covariance matrix

	R	G	В
R	Var R	RG	RB
G	RG	Var G	GB
В	RB	GB	Var B

Are the elements of the vector independent? Compare:

A lottery of 3 digits

If Independent: Each observation is modeled with two vectors: The mean and the diagonal of the covariance of the matrix

+ BUT Data is not always a single Gaussian

Gaussian Mixture Models

Suppose you wanted to know the likely nationality of a student and all you knew was their height

Data: Height & Nationality

Collect data

- Each row is a student and their height and their nationality
- Learn the mean and variance for each
- "Decode": For a new student, what's the likelihood of being each nationality

+ Mixture models

Suppose you find that the data does not fall into a nice Gaussian, but that if you model males and females separately, you have a better model

E.g. 5'8" is tall for a female but short for a male

You can build a "mixture model" that better fits the data

+ Old Faithful Data

Horizontal axis is duration of the eruption in minutes.

- Vertical axis is time until the next eruption in minutes.
- (a) A single Gaussian. (b) A mixture of two Gaussians.

+ Back to Acoustic Modeling

Acoustic Model

- Increasingly sophisticated models
- Acoustic Likelihood for each state:
 - Gaussians
 - Multivariate Gaussians
 - Mixtures of Multivariate Gaussians
- Where a state is progressively:
 - Context Independent Subphone (3ish per phone)
 - Context Dependent phone (triphones)
 - State-tying of Context Dependent phones

+ BUT What we really want is a probability

Gaussian as Probability Density Function

+ Gaussian PDFs

- A Gaussian is a probability density function; probability is the area under curve.
- To make it a probability, we constrain area under curve = 1

■ BUT…

- We will be using "point estimates"; value of Gaussian at point.
- Technically these are not probabilities, since a pdf gives a probability over an interval, needs to be multiplied by dx
- As we will see later, this is ok since the same value is omitted from all Gaussians, so argmax is still correct.

+ Gaussians for Acoustic Modeling

Using a (univariate) Gaussian as an acoustic likelihood estimator

- Let's suppose our observation was a single real-valued feature (instead of 39D vector)
- Then if we had learned a Gaussian over the distribution of values of this feature
- We could compute the likelihood of any given observation o_t as follows:
 Observation mean

+ Multivariate Gaussians

 \blacksquare Instead of a single mean μ and variance σ :

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} \exp(-\frac{(x - \mu)^2}{2\sigma^2})$$

• Vector of observations x modeled by vector of means μ and covariance matrix Σ

$$f(x \mid \mu, \Sigma) = \frac{1}{(2\pi)^{D/2} \mid \Sigma \mid^{1/2}} \exp\left(-\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu)\right)$$

+ But we're not there yet

Single Gaussian may do a bad job of modeling distribution in any dimension:

Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slide

+ Mixture of Gaussians to model a function

Mixtures of Gaussians

M mixtures of Gaussians:

$$f(x \mid \mu_{jk}, \Sigma_{jk}) = \sum_{k=1}^{M} c_{jk} \frac{1}{(2\pi)^{D/2} \mid \Sigma_{jk} \mid^{1/2}} \exp\left(-\frac{1}{2}(x - \mu_{jk})^{T} \Sigma^{-1}(x - \mu_{jk})\right)$$

For diagonal covariance:

$$b_{j}(o_{t}) = \sum_{k=1}^{M} c_{jk} \prod_{d=1}^{D} \frac{1}{\sqrt{2\pi\sigma_{jkd}^{2}}} \exp\left(-\frac{1}{2}\left(\frac{o_{td} - \mu_{jkd}}{\sigma_{jkd}}\right)^{2}\right)$$

$$b_{j}(o_{t}) = \sum_{k=1}^{M} \frac{c_{jk}}{2\pi^{D/2} \prod_{d=1}^{D} \sigma_{jkd}^{2}} \exp(-\frac{1}{2} \sum_{d=1}^{D} \frac{(x_{jkd} - \mu_{jkd})^{2}}{\sigma_{jkd}^{2}})$$

+ GMMs

- Summary: each state has a likelihood function parameterized by:
 - M Mixture weights
 - M Mean Vectors of dimensionality D
 - Either
 - M Covariance Matrices of DxD
 - Or more likely
 - M Diagonal Covariance Matrices of DxD
 - which is equivalent to
 - M Variance Vectors of dimensionality D

+ Context Dependent Acoustic Models: Triphones

- Our phoneme models represent each phones with 3 states: beginning middle and end
- But rather then just modeling the phonemes, we model the phonemes in context
- A "Triphone" model represents a phone with a particular right and left context.

+ Phoneme Variation

+ Sparse data problem

For a 50 phoneme set we would need 125,000 triphones

- In practice, not all combinations occur
 - 55K triphones needed for 20K word WSJ corpus
 - Only 18.5K occurred in the training data
- Attempting to train all of these triphones would result in many of then not having enough samples to adequately train.

Reducing triphone parameters

- Clustering contexts similar contexts
- Tying subphones whose clusters fall into the same contexts
- States that are "shared" use the same Gaussians
- This significantly cuts down on the number of parameters to be trained

+ Phonemes with similar contexts

+ How to determine which contexts to cluster?

- Decision tree based on phonetic features
- Root is the phoneme with all contexts
- Each level of the tree splits the cluster based on a set of questions about a particular phonetic features
 - Generally based on articulatory features

Feature	Phones
Stop	bdgkpt
Nasal	m n ng
Fricative	ch dh f jh s sh th v z zh
Liquid	lrwy
Vowel	aa ae ah ao aw ax axr ay eh er ey ih ix iy ow oy uh uw
Front Vowel	ae eh ih ix iy
Central Vowel	aa ah ao axr er
Back Vowel	ax ow uh uw
High Vowel	ih ix iy uh uw
Rounded	ao ow oy uh uw w
Reduced	ax axr ix
Unvoiced	ch f hh k p s sh t th
Coronal	ch d dh jh l n r s sh t th z zh

+ Decision Tree

Thanks to Dan Jurafsky for these slides

+ Tied states

- a: t-iy-n
- b: t-iy-ng
- c: f-iy-l
- d: s-iy-l

Thanks to Dan Jurafsky for these slides

Steps to train Continuous Density State Tied models

Thanks to Dan Jurafsky for these slides

What's wrong with Acoustic Models?

 OUCH: Outing the Unfortunate Characteristics of HMMs

+ "Independence" Assumptions in AM

- Transition probabilities are independent from each other
 - Hidden under Markov blanket.
- Emission probabilities are independent from each other
 - Each observation is conditioned on only one state.
- A and B are conditionally independent
 - Stationarity, at transition from q_{i,t} to q_{j,t+1}, its probability α_{i->j} is independent no matter what observation, o_t is conditioned on q_{i,t}.
- Observations are in multivariate normal distribution with diagonal covariance
 - Remember that if Cov(x,y) == 0: x⊥y, thus, by ignoring non-diagonals , we treat all features as independent from each other.

+ Independence "Assumptions" in AM

- We don't know these conditional independences hold in real speech data, we just assume.
- What if we have a dataset that satisfies, for 100% sure, the independences?
 - If HMM works differently (presumably better) with that data than real speech data, it proves that these independence assumptions on real speech are wrong.

(Classic form of proof by contradiction)

- How can we get this particular data?
 - → We use artificial data stochastically simulated.

+ Sources for Data Simulation

After normally trained an acoustic model, we have

- Transition probabilities
- Emission probabilities
- Original real data
- Original transcript
- Pronunciation dictionary

+ Pseudo speech data

- This reconstructed pseudo data has exactly the same length in frames with exactly the same state sequence and alignment.
- Each frame is generated/picked-up from only one of mutually independent states, based on independent multivariate distributions.
- That is, this data will completely satisfy the suspicious assumptions, except for that resampled data ignores the diagonal normal output distribution.

+ Frame level resampling

- Think of one "urn" for each state that holds observations
- Put all observations from the training data that are in that state into the urn
- Create new test utterances by Creating the same state sequence and select o observations for each state rand rom the urn
- If the observations are really ind then it shouldn't matter
 - what instance of a state they …… from

 - Which speaker they are from

_			
	-		

Dataset	WER
Original REAL speech data	.18
simulated	.02
resampled	.05
simulated using full cov matrix	.03

Conclusion: We have a serious problem in our model assumptions, and diagonal simplification is definitely not the problem.

+ Multi-level resampling (Gillick et al 2011)

- Same idea, similar procedure but on
 - state level
 - phone level
 - word level

Results on SWBD from Gillick et al 2011

Conclusion: the largest increase in WER is observed when we move from frame resampling to state resampling \rightarrow this is where we first need to look at!

How can we fix this? - Some suggestions from Morgan et al 2013

Diagnose, diagnose, diagnose.

- We need diagnostic analysis.
- Not simply seeing WER/perplexity going down, we need some kind of methodology of specificity and efficiency.
- Encouraging a diagnostic spirit could have very broad effects.