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+ Back to Embedded Training
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+ How do we model the observations? .

Each element is the vector is a real value

m Multivariant Gaussian Mixture Models

m Gaussian: Determine the likelihood of a real value to be in a
particular state

= Multivariant: We have a vector of values, not just one

= Mixture Models: Values may not be best modeled by a
single Gaussian

m Learning the “parameters” (means and variances)
using the backward forward algorithm oy




+ Gaussians are parameters by mean and
variance .
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+ Reminder: means and variances |.

m For a discrete random variable X

= Mean is the expected value of X
= Weighted sum over the values of X

N
p=EX)=) pX)X;
=1
m Variance is the squared average deviation from mean

N
> —E(X,—E(X)?) = 3. p(X)(Xi — E(X))?
i—=1



+ BUT: We have a vector not a single value: .

Multivariant Gaussians
Gray Scale

‘ 0 Black

C 50 Gray
O 100  White
m Color is a combination of 3 values:
Color Vectors
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m Gray-scale is real value from 0-100




Observation
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+ Example training data for color vectors .

Label
Orange

Yellow
Brown
Pink

Blue



. Learning "Purple”
using Multivariant Gaussians

Collect all the observations
labeled “purple”

Covariance matrix

R G B
@ R G B R Var R RG RB
135 |38 | 224 G RG | VarG | GB
104 |74 | 141 B RB GB | VarB
128 | 28 177
66 |47 133 Are the elements of the vector independent?
167 |0 255 Compare:
A lottery of 3 digits
Means: 120 37.4 186

If Independent: Each observation is modeled with two
vectors: The mean and the diagonal of the covariance of
the matrix



+ BUT Data is not always a single Gaussian .

Gaussian Mixture Models

m Suppose you wanted to know the likely nationality of
a student and all you knew was their height

= Data: Height & Nationality

m Collect data
= Each row is a student and their height and their nationality
m Learn the mean and variance for each

= “Decode”. For a new student, what’s the likelihood of being
each nationality



+ Mixture models |.

m Suppose you find that the data does not fall into a
nice Gaussian, but that if you model males and
females separately, you have a better model

= E.g. 5’8" is tall for a female but short for a male

m You can build a “mixture model’ that better fits the
data



+ Old Faithful Data
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= Horizontal axis is duration of the eruption in minutes.
= Vertical axis is time until the next eruption in minutes.

= (a) A single Gaussian. (b) A mixture of two Gaussians.



+ Back to Acoustic Modeling

m Acoustic Model
= Increasingly sophisticated models

= Acoustic Likelihood for each state:
m Gaussians
m Multivariate Gaussians
= Mixtures of Multivariate Gaussians

= Where a state is progressively:
m Context Independent Subphone (3ish per phone)
m Context Dependent phone (triphones)
m State-tying of Context Dependent phones



+ BUT What we really want is a probability .

Gaussian as Probability Density Function
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Gaussian PDFs

m A Gaussian is a probability density function; probability i

the area under curve.

= To make it a probability, we constrain area under curve = 1

m BUT...

We will be using “point estimates”; value of Gaussian at point.

Technically these are not probabilities,
since a pdf gives a probability over an
interval, needs to be multiplied by dx

As we will see later, this is ok since the
same value is omitted from all
Gaussians, so argmax is still correct.
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+ Gaussians for Acoustic Modeling |.

A Gaussian is parameterized by a mean and

a variance:
: : 2 gDiﬁerent means

= P(0|q):

P(o|q) is highest here at mean

e /P(o|q is low here, very far from mean)




+ Using a (univariate) Gaussian as an |.
acoustic likelihood estimator

m Let’'s suppose our observation was a single real-valued
feature (instead of 39D vector)

m Then if we had learned a Gaussian over the distribution of
values of this feature

= We could compute the likelihood of any given observation

o, as follows: observation mean
1 (o i)
O — U;
bj(or) = ExXp o
/ > 262

f variance
variance



+ Multivariate Gaussians |.

m Instead of a single mean u and variance oc:

1 C(x-w’
f(XW,G)—G ZnGXp( Py )

= Vector of observations x modeled by vector of means u and
covariance matrix X

1 1

expl ——(x - u) ' (x -

f(x |M9Z) =




+ But we're not there yet |.

m Single Gaussian may do a bad job of modeling
distribution in any dimension:

Bad Newsg!!!

A

m Solution: Mixtures of Gaussians

Figure from Chen, Picheney et al slid¢



+ Mixture of Gaussians to model a function




+ Mixtures of Gaussians |.

m M mixtures of Gaussians:

M
1 1 _

f(x |‘qu’ Jk) ECJ (275)1)/2 |2 |1/2 eXp(—E(x—‘ujk)TZ I(X_Mjk))

k=1

= For diagonal covariance:

QT 1 / 1({o,—U :
b.(o)=Yc. exp| ——| =~ jkd)
J E Jkl_[\/zno,z \ 2( O i

k=1 d=1 jkd /
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GMMs |.

mSummary: each state has a likelihood
function parameterized by:
M Mixture weights
M Mean Vectors of dimensionality D

Either

m M Covariance Matrices of DxD

Or more likely

m M Diagonal Covariance Matrices of DxD
which is equivalent to
M Variance Vectors of dimensionality D



+ Context Dependent Acoustic Models: Triphonesl.

= Our phoneme models represent each phones with 3
states: beginning middle and end

= But rather then just modeling the phonemes, we
model the phonemes in context

= A “Triphone” model represents a phone with a
particular right and left context.

Thanks to Dan Jurafsky for these slides



+ Phoneme Variation

Frequency (Mz)

Thanks to Dan Jurafsky for these slides



Sparse data problem |.

m For a 50 phoneme set we would need 125,000 triphones

In practice, not all combinations occur
m 55K triphones needed for 20K word WSJ corpus
m Only 18.5K occurred in the training data

Attempting to train all of these triphones would result in many of
then not having enough samples to adequately train.

= Reducing triphone parameters
Clustering contexts similar contexts
Tying subphones whose clusters fall into the same contexts
States that are “shared” use the same Gaussians

This significantly cuts down on the number of parameters to be
trained

Thanks to Dan Jurafsky for these slides



+ Phonemes with similar contexts |.

Frequancy (Hz)

3120
Time (5)

[wiy] [riy] [miy] [niy]

Thanks to Dan Jurafsky for these slides



+ How to determine which contexts to cluster?

m Decision tree based on phonetic features

= Root is the phoneme with all contexts

m Each level of the tree splits the cluster based on a
set of questions about a particular phonetic features

= Generally based on articulatory features

Thanks

Feature Phones

Stop bdgkpt

Nasal m n ng

Fricative chdhfjhsshthvzzh

Liquid Irwy

Vowel aa ae ah ao aw ax axr ay eh er ey ih 1X iy ow oy uh uw

Front Vowel
Central Vowel
Back Vowel
High Vowel
Rounded
Reduced
Unvoiced

ae ehih 1x 1y

aa ah ao axrer

ax ow uh uw

th 1X 1y uh uw

ao ow oy uh uw w

ax axr 1x
chfhhkpsshtth
chddhjhlnrsshtthzzh

Coronal



+ Decision Tree

—_— —

Phone /ih/
beg. state

‘ Left nasal? \

Yes No
‘ Right liquid?l ILeﬁ fricative?\

Yes/ ~.No

Cluster A: 8h
ngitl,  Yes "\ No D)y
m-ih+1,

Cluster B:

//"_/ \\\\\\
) =th+r
S 00 G-
\“*-N....,.m//

n-ith+w,

Thanks to Dan Jurafsky for these slides



+ Tied states

a: t-iy-n

b: t-iy-ng

c: f-iy-l

d: s-iy-l

t-iy+n t-iy+ng f-iy+l S-iy+

uvw{ﬂ v\/ \/w U\/C fwa Qe

| "' )" " ‘:,','., . )’

al a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3 12 states
abc2 abc2; 6dq abc2 c3d ¢d1 @@ cd3 6 states

Thanks to Dan Jurafsky for these slides




+-Steps to train Continuous Density State Tied modelsl

1. Train monophone Note: These are multivariate
single Gaussian models /E'/ monophone, that is one gaussians
_J [_. for every element in the vector
ioilggr?ones to Y o t|y+ng f|Y+I e Ty
triphones OQO‘O‘O OQQOO OOQ‘O'O O‘O‘O‘Q‘O ke
AN WAN WARN AR

(3) Cluster and tie t- |y+n t- |y+ng f- |y+| S- |£/+|
3. Cluster and
tie triphones OO{}O OOOQO OQOQO OOO‘OO ... etc.

| | | \

4. Expand to t-ly+n tly+ng Hy+l S- 'Y*'
GMMs ooooo oooov oooow oo\goo »

Thanks to Dan Jurafsky for these slides



What's wrong with
Acoustic Models?

OUCH: Outing the Unfortunate

Characteristics of HMMs




+ “Independence” Assumptions in AM |.

m Transition probabilities are independent from each other
= Hidden under Markov blanket.

m Emission probabilities are independent from each other
= Each observation is conditioned on only one state.

m A and B are conditionally independent

= Stationarity, at transition from q;; to g;., its probability a ;..; is independent no matter what
observation, o, is conditioned on q;; .

m Observations are in multivariate normal distribution with diagonal covariance

= Remember that if Cov(x,y) == 0: xLy, thus, by ignoring non-diagonals , we treat all features as
independent from each other.



+ Independence “Assumptions” in AM |.

m \We don’t know these conditional independences hold in
real speech data, we just assume.

m What if we have a dataset that satisfies, for 100% sure,
the independences?

= If HMM works differently (presumably better) with that data
than real speech data, it proves that these independence
assumptions on real speech are wrong.
(Classic form of proof by contradiction)

m How can we get this particular data?
= We use artificial data stochastically simulated.



+ Sources for Data Simulation |.

= After normally trained an acoustic model, we have
= Transition probabilities
= Emission probabilities
= Original real data
= Original transcript

= Pronunciation dictionary



+ Pseudo speech data |.

m This reconstructed pseudo data has exactly the same length in

frames with exactly the same state sequence and alignment.

m Each frame is generated/picked-up from only one of mutually

independent states, based on independent multivariate distributions.

m That is, this data will completely satisfy the suspicious assumptions,
except for that resampled data ignores the diagonal normal output

distribution.



*+ Frame level resampling

m Think of one “urn” for each state that holds
observations

m Put all observations from the training data
that are in that state into the urn

m Create new test utterances by Creating the
same state sequence and selecting
observations for each state randomly from
the urn

then it shouldn’t matter w,
= what instance of a state they came from
= what order they are in within the state

= Which speaker they are from
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+ Results from Wegmann et al 2010 |.

T e e

Original REAL speech data 18
simulated .02
resampled .05

simulated using full cov matrix .03

Conclusion: We have a serious problem in our model
assumptions, and diagonal simplification is definitely not
the problem.



+ Multi-level resampling (Gillick et al 2011) I.

w »| W W . . .
— 2 g m Same idea, similar
! \\\“~
L4 - procedure but on
( P1 ) C P2
RN R = state level
‘/, * \\‘ ‘ v ‘
@ G?——» = phone level
= word level




4+ Results on SWBD from Gillick et al 2011

____ Dataset | WER _

Original 61.5 70 |
Full simulation 2.4 gg I I
Emission only simulation 3.0 28 | I
Resample frames 4.5 18 s I
Resample states 28.2 & é\&"' Q\Gi Q\Q"Q S ‘ & ) ®f<§
Resample phonemes 42.1 .\@&(b ((/&‘\6 Q@’bé\ é’o(b@ Q)@@@ Qéb@ O
< & PR &
Resample words 56.4 &
®WER

Conclusion: the largest increase in WER is observed when we move from frame
resampling to state resampling =» this is where we first need to look at!



4+ How can we fix this? - Some suggestions from
Morgan et al 2013

m Diagnose, diagnose, diagnose.
= We need diagnostic analysis.

= Not simply seeing WER/perplexity going down, we need

some kind of methodology of specificity and efficiency.

= Encouraging a diagnostic spirit could have very broad effects.



