
+

CS 136a Speech Recognition
February 7, 2020
Professor Meteer

Thanks to Dan Jurafsky for these slides

Speech Recognition
Architecture:

HMMs: Decoding and
Learning

+Speech Recognition Architecture

Thanks to Dan Jurafsky for these slides

+ ASR components

n Feature Extraction, MFCCs, start of AM

n HMMs, Forward, Viterbi,

n Baum-Welch (Forward-Backward)

n Acoustic Modeling and GMMs

n N-grams and Language Modeling

n Search and Advanced Decoding

n Dealing with Variation

+ The Three Basic Problems for HMMs

n Problem 1 (Evaluation):
n Given the observation sequence O=(o1o2…oT), and an HMM model F

= (A,B), how do we efficiently compute P(O| F), the probability of the
observation sequence, given the model

n Problem 2 (Decoding):
n Given the observation sequence O=(o1o2…oT), and an HMM model F

= (A,B), how do we choose a corresponding state sequence
Q=(q1q2…qT) that is optimal in some sense (i.e., best explains the
observations)

n Problem 3 (Learning):
n How do we adjust the model parameters F = (A,B) to maximize P(O|
F)?

Thanks to Dan Jurafsky for these slides

Jack Ferguson at IDA in the 1960s

+ Two kinds of probabilities

n A: State transition probabilities
n What’s the likelihood of being state i, given the previous state is

state i-1

n B: Observation likelihood probabilities p(oi|si)
n Given this observation, what’s the likelihood to be in the state

Thanks to Dan Jurafsky for these slides

Observations

State Sequence

+ Where we are

n Assume we have learned our observations and transition
probabilities and can just look them up
n We’ll get to where those come from

n We have an audio signal (e.g. sequence of observations)
and now
n We want to know the sequence of states

n Which will tell us the sequence of phonemes
n Which will tell us the words

n Right now, we are only looking at states within a word
n word sequence probabilities come from the language model

Thanks to Dan Jurafsky for these slides

+ Front End and Decoding

2/7/20CS 224S Winter 2007

7

Observations

State Sequence
Which is the
best path?

+ Decoding
n Imagine we have a complete model that can give us both transition and

observation probabilities.

n This equation is guaranteed to give us the best state sequence

n We could just enumerate all paths given the input and use the model to
assign probabilities to each.
n Not a good idea (NT)
n Luckily dynamic programming helps us here

n But how to make it operational? How to compute this value?

n Intuition of Bayesian classification:
n Use Bayes rule to transform this equation into a set of other probabilities that are

easier to compute
2/7/20Speech and Language Processing - Jurafsky and Martin

8

€

ˆ s 1
n = argmax

s1
n P(s1

n | o1
n)

+Using Bayes Rule

2/7/20Speech and Language Processing - Jurafsky and Martin

9

€

P(s |o) =
P(o | s)P(s)

P(o)

€

ˆ s 1
n = argmax

s1
n

P(o1
n | s1

n)P(s1
n)

P(o1
n)

€

ˆ s 1
n = argmax

s1
n P(o1

n | s1
n)P(s1

n)

Words and tags
(example in the book) Observations and states

+ Using the Forward algorithm

nA kind of dynamic programming algorithm
n Just like Minimum Edit Distance
n Uses a table to store intermediate values

n Idea:
n Compute the likelihood of the observation sequence
n By summing over all possible hidden state sequences
n But doing this efficiently

n By folding all the sequences into a single trellis

Thanks to Dan Jurafsky for these slides

+ The Forward Trellis (quick look)

Thanks to Dan Jurafsky for these slides

O=.1

O=.4 O=.2

O=.5

+ We update each cell

Thanks to Dan Jurafsky for these slides

+
nGiven an observation sequence and an HMM, the task

of the decoder: find the best hidden state sequence

nGiven
n the observation sequence O=(o1o2…oT),
n and an HMM model F = (A,B),
n how do we choose a corresponding state sequence

Q=(q1q2…qT) that is optimal in some sense (i.e., best explains
the observations)

nOne possibility:
n For each hidden state sequence Q compute P(O|Q)
n Pick the highest one

nWhy not? NT

Decoding

Thanks to Dan Jurafsky for these slides

+ Instead: The Viterbi algorithm
n Dynamic programming algorithm similar to the Forward

algorithm

n Viterbi intuition
n We want to compute the joint probability of the observation sequence

together with the best state sequence

Thanks to Dan Jurafsky for these slides

+ The Viterbi trellis

Thanks to Dan Jurafsky for these slides

+ Viterbi backtrace

Thanks to Dan Jurafsky for these slides

+ HMMs for Speech
n But let’s return to think about speech

Thanks to Dan Jurafsky for these slides

Section 7.2. Overview of Hidden Markov Models

which give information about how much energy in the signal is at different
frequencies. In the subword or phone recognition stage, we use statistical
techniques like neural networks or Gaussian models to tentatively recognize
individual speech sounds like p or b. For a neural network, the output of
this stage is a vector of probabilities over phones for each frame (i.e. 'for
this frame the probability of [p] is .8, the probability of [b] is .1, the proba-
bility of [f] is .02, etc'); for a Gaussian model the probabilities are slightly
different. Finally, in the decoding stage, we take a dictionary of word pro-
nunciations and a language model (probabilistic grammar) and use a Viterbi

239

or A* decoder to find the sequence of words which has the highest proba- DECODER

bility given the acoustic events.

Speech
Waveform

Feature Extraction
(Signal Processing)

Neural Net Spectral
Feature
Vectors

Phone Likelihood
- .. Estimation (Gaussians

or Neural Networks)

Phone
Likelihoods
P(olq)

a 1 o.J o.z ,
Decoding (Viterbi

HMM Lexicon-.or Stack Decoder)

g;.g..g
Words

ay070
aa022

004
003

ay080 n
aa0l2

004 m
003

need a

Figure 7.2 Schematic architecture for a (simplified) speech recognizer

7.2 OVERVIEW OF HIDDEN MARKOV MODELS

In Chapter 5 we used weighted finite-state automata or Markov chains to
model the pronunciation of words. The automata consisted of a sequence
of states q = (qoql qz ... qn), each corresponding to a phone, and a set of
transition probabilities between states, a01 , a12 , a13 , encoding the probability
of one phone following another. We represented the states as nodes, and
the transition probabilities as edges between nodes; an edge existed between
two nodes if there was a non-zero transition probability between the two
nodes. We also saw that we could use the forward algorithm to compute the

+ Word model
n A simple weighted automaton or Markov chain

pronunciation network for the word need,
n showing the transition probabilities, and a sample observation

sequence.
n The transition probabilities a x y between two states x and y are 1.0

unless otherwise specified.

Thanks to Dan Jurafsky for these slides

240

HIDDEN
MARKOV
MODEL

Chapter 7. HMMs and Speech Recognition

likelihood of a sequence of observed phones o = (010203 ... Ot). Figure 7.3
shows an automaton for the word need with sample observation sequence of
the kind we saw in Chapter 5.

Word Model

Observation
Sequence
(phone symbols) n

I

iy
I

d

Figure 7.3 A simple weighted automaton or Markov chain pronunciation
network for the word need, showing the transition probabilities, and a sample
observation sequence. The transition probabilities axy between two states x
and y are 1.0 unless otherwise specified.

While we will see that these models figure importantly in speech recog-
nition, they simplify the problem in two ways. First, they assume that the
input consists of a sequence of symbols! Obviously this is not true in the
real world, where speech input consists essentially of small movements of
air particles. In speech recognition, the input is an ambiguous, real-valued
representation of the sliced-up input signal, called features or spectral fea-
tures. We will study the details of some of these features beginning on
page 258; acoustic features represent such information as how much energy
there is at different frequencies. The second simplifying assumption of the
weighted automata of Chapter 5 was that the input symbols correspond ex-
actly to the states of the machine. Thus when seeing an input symbol [b],
we knew that we could move into a state labeled [b]. In a Hidden Markov
Model, by contrast, we can't look at the input symbols and know which state
to move to. The input symbols don't uniquely determine the next state. 1

Recall that a weighted automaton or simple Markov model is specified
by the set of states Q , the set of transition probabilities A, a defined start
state and end state(s), and a set of observation likelihoods B. For weighted
l Actually, as we mentioned in passing, by this second criterion some of the automata we
saw in Chapter 5 were technically HMMs as well. This is because the first symbol in the
input string [n iy] was compatible with the [n] states in the words need or an. Seeing the
symbols [n], we didn't know which underlying state it was generated by, need-n or an-n.

+ BUT Observations are vectors not phonemes
n An HMM pronunciation network for the word need,

n showing the transition probabilities, and a sample observation
sequence.

n Note the addition of the output probabilities B.
n Self-loops on the states to model variable phone durations.

Thanks to Dan Jurafsky for these slides

Section 7.2. Overview of Hidden Markov Models

automata, we defined the probabilities bi(Ot) as 1.0 ifthe state i matched the
observation Ot and 0 if they didn't match. An HMM formally differs from a
Markov model by adding two more requirements. First, it has a separate set
of observation symbols 0, which is not drawn from the same alphabet as the
state set Q. Second, the observation likelihood function B is not limited to
the values 1.0 and 0; in an HMM the probability bi(Ot) can take on any value
from 0 to 1.0.

Word Model

Observation
Sequence
(spectral feature
vectors)

Figure 7.4 An HMM pronunciation network for the word need, showing
the transition probabilities, and a sample observation sequence. Note the ad-
dition of the output probabilities B. HMMs used in speech recognition usually
use self-loops on the states to model variable phone durations.

Figure 7.4 shows an HMM for the word need and a sample observa-
tion sequence. Note the differences from Figure 7.3. First, the observation
sequences are now vectors of spectral features representing the speech sig-
nal. Next, note that we've also allowed one state to generate multiple copies
of the same observation, by having a loop on the state. This loops allows
HMMs to model the variable duration of phones; longer phones require more
loops through the HMM.

In summary, here are the parameters we need to define an HMM:

• states: A set of states Q = q1 qz ... qN.
• transition probabilities: A set of probabilities A= ao1aoz ... anl ... ann·

Each aiJ represents the probability of transitioning from state i to state
j. The set of these is the transition probability matrixZ,

• observation likelihoods: A set of observation likelihoods B = bi(ot),

241

+ Example

n Pronunciation networks for the words I, on, need, and the.
All networks (especially the) are significantly simplified.

Thanks to Dan Jurafsky for these slides

Section 7.3. The Viterbi Algorithm Revisited

Chinese word-segmentation in Chapter 5; Recall that the algorithm for Chi-
nese word-segmentation relied on choosing the segmentation that resulted
in the sequence of words with the highest frequency. For speech segmenta-
tion we use the more sophisticated N -gram language models introduced in
Chapter 6. In the rest of this section we show how the Viterbi algorithm can
be applied to the task of decoding and segmentation of a simple string of
observations phones, using an n-gram language model. We will show how
the algorithm is used to segment a very simple string of words. Here's the
input and output we will work with:

Input Output
[aa n iy dh ax] I need the

Figure 7.5 shows word models for I, need, the, and also, just to make
things difficult, the word on.

Word model for "the"

.12

Word model for "need" Word model for "I"

Figure 7.5 Pronunciation networks for the words I, on, need, and the. All
networks (especially the) are significantly simplified.

Recall that the goal of the Viterbi algorithm is to find the best state se-
quence q = (q1 qzq3 ... qt) given the set of observed phones o = (010203 ... Ot).
A graphic illustration of the output of the dynamic programming algorithm is
shown in Figure 7.6. Along they-axis are all the words in the lexicon; inside
each word are its states. The x-axis is ordered by time, with one observed
phone per time unit. 3 Each cell in the matrix will contain the probability of
3 This x-axis component of the model is simplified in two major ways that we will show
how to fix in the next section. First, the observations will not be phones but extracted spectral
features, and second, each phone consists of not time unit observation but many observations
(since phones can last for more than one phone). They-axis is also simplified in this example,
since as we will see most ASR system use multiple 'subphone' units for each phone.

243

Section 7.3. The Viterbi Algorithm Revisited

Chinese word-segmentation in Chapter 5; Recall that the algorithm for Chi-
nese word-segmentation relied on choosing the segmentation that resulted
in the sequence of words with the highest frequency. For speech segmenta-
tion we use the more sophisticated N -gram language models introduced in
Chapter 6. In the rest of this section we show how the Viterbi algorithm can
be applied to the task of decoding and segmentation of a simple string of
observations phones, using an n-gram language model. We will show how
the algorithm is used to segment a very simple string of words. Here's the
input and output we will work with:

Input Output
[aa n iy dh ax] I need the

Figure 7.5 shows word models for I, need, the, and also, just to make
things difficult, the word on.

Word model for "the"

.12

Word model for "need" Word model for "I"

Figure 7.5 Pronunciation networks for the words I, on, need, and the. All
networks (especially the) are significantly simplified.

Recall that the goal of the Viterbi algorithm is to find the best state se-
quence q = (q1 qzq3 ... qt) given the set of observed phones o = (010203 ... Ot).
A graphic illustration of the output of the dynamic programming algorithm is
shown in Figure 7.6. Along they-axis are all the words in the lexicon; inside
each word are its states. The x-axis is ordered by time, with one observed
phone per time unit. 3 Each cell in the matrix will contain the probability of
3 This x-axis component of the model is simplified in two major ways that we will show
how to fix in the next section. First, the observations will not be phones but extracted spectral
features, and second, each phone consists of not time unit observation but many observations
(since phones can last for more than one phone). They-axis is also simplified in this example,
since as we will see most ASR system use multiple 'subphone' units for each phone.

243

+ The transition probabilities
n Single automaton made from the words I, need, on, and the.

n The arcs between words have probabilities computed from the bigrams in
the table below

Thanks to Dan Jurafsky for these slides

246 Chapter 7. HMMs and Speech Recognition

Figure 7.8 Single automaton made from the words I, need, on, and the. The
arcs between words have probabilities computed from Figure 7. 7. For lack of
space the figure only shows a few of the between-word arcs.

algorithm sets up a probability matrix, with one column for each time index
t and one row for each state in the state graph. The algorithm first creates
T + 2 columns; Figure 7.9 shows the first 6 columns. The first column is
an initial pseudo-observation, the next corresponds to the first observation
phone [aa], and so on. We begin in the first column by setting the probability
of the start state to 1.0, and the other probabilities to 0; the reader should
find this in Figure 7.10. Cells with probability 0 are simply left blank for
readability. For each column of the matrix, i.e. for each time index t, each
cell viterbi[t,j], will contain the probability of the most likely path to end in
that cell. We will calculate this probability recursively, by maximizing over
the probability of coming from all possible preceding states. Then we move
to the next state; for each ofthe i states viterbi[O,i] in column 0, we compute
the probability of moving into each of the j states viterbi[l,j] in column 1,
according to the recurrence relation in (7.9). In the column for the input aa,
only two cells have non-zero entries, since b1 (aa) is zero for every other
state except the two states labeled aa. The value of viterbi(l,aa) of the word
I is the product of the transition probability from# to I and the probability of
I being pronounced with the vowel aa.

Notice that if we look at the column for the observation n, that the word
on is currently the 'most-probable' word. But since there is no word or set of
words in this lexicon which is pronounced i dh ax, the path starting with on
is a dead end, i.e. this hypothesis can never be extended to cover the whole

Section 7.3. The Viterbi Algorithm Revisited

grammars) and so some recognizers have moved to another kind of decoder,
the stack or A* decoder; more on that later. As we saw in our discussion
of the minimum-edit-distance algorithm in Chapter 5, the reason for making
the Viterbi assumption is that it allows us to break down the computation of
the optimal path probability in a simple way; each of the best paths at time t
is the best extension of each of the paths ending at time t - 1. In other words,
the recurrence relation for the best path at time t ending in state j, viterbi[t,j],
is the maximum of the possible extensions of every possible previous path
from time t - 1 to time t:

viterbi[t, j] = viterbi[t- 1, i] aiJ) bJ(Ot) (7.9)
l

The algorithm as we describe it in Figure 7.9 takes a sequence of ob-
servations, and a single probabilistic automaton, and returns the optimal path
through the automaton. Since the algorithm requires a single automaton, we
will need to combine the different probabilistic phone networks for the, I,
need, and a into one automaton. In order to build this new automaton we
will need to add arcs with probabilities between any two words: bigram
probabilities. Figure 7.7 shows simple bigram probabilities computed from
the combined Brown and Switchboard corpus.

I need 0.0016 need need 0.000047 #Need 0.000018
I the 0.00018 need the 0.012 #The 0.016
I on 0.000047 need on 0.000047 #On 0.00077
II 0.039 need I 0.000016 #I 0.079
the need 0.00051 on need 0.000055
the the 0.0099 on the 0.094
the on 0.00022 on on 0.0031
the I 0.00051 on I 0.00085

Figure7.7 Bigram probabilities for the words the, on, need, and I following
each other, and starting a sentence (i.e. following #). Computed from the
combined Brown and Switchboard corpora with add-0.5 smoothing.

Figure 7.8 shows the combined pronunciation networks for the 4 words
together with a few of the new arcs with the bigram probabilities. For read-
ability of the diagram, most of the arcs aren't shown; the reader should imag-
ine that each probability in Figure 7.7 is inserted as an arc between every two
words.

The algorithm is given in Figure 5.19 in Chapter 5, and is repeated
here for convenience as Figure 7.9. We see in Figure 7.9 that the Viterbi

245

+ Viterbi on speech
n An illustration of the results of the Viterbi algorithm

used to find the most-likely phone sequence (and
hence estimate the most-likely word sequence).

Thanks to Dan Jurafsky for these slides

244

DYNAMIC
PROGRAM-
MING
INVARIANT

Chapter 7. HMMs and Speech Recognition

the most-likely sequence ending at that state. We can find the most-likely
state sequence for the entire observation string by looking at the cell in the
right-most column that has the highest-probability, and tracing back the se-
quence that produced it.

d

need ===7Li============
ax ___ : _____ j__ ,L _____ _
iy ___ i _____ j__ ---------

the ---j-----b ________ _
on n

a a
i

ay i
aa v------------------

aa n i dh ax ...

Figure 7.6 An illustration of the results of the Viterbi algorithm used to
find the most-likely phone sequence (and hence estimate the most-likely word
sequence).

More formally, we are searching for the best state sequence q* = (q1 qz . .. qr),
given an observation sequence o = (01 Oz ... or) and a model (a weighted au-
tomaton or 'state graph') A. Each cell viterbi[i, t]of the matrix contains the
probability of the best path which accounts for the first t observations and
ends in state i of the HMM. This is the most-probable path out of all possible
sequences of states of length t - 1:

viterbi[t,i] = max P(qlqz ... qt-l,qt = i,ol,oz ... otiA) (7.8)
qt,qz, ... ,q,_t

In order to compute viterbi[t,i], the Viterbi algorithm assumes the dy-
namic programming invariant. This is the simplifying (but incorrect) as-
sumption that if the ultimate best path for the entire observation sequence
happens to go through a state qi, that this best path must include the best
path up to and including state qi. This doesn't mean that the best path at any
time t is the best path for the whole sequence. A path can look bad at the
beginning but turn out to be the best path. As we will see later, the Viterbi
assumption breaks down for certain kinds of grammars (including trigram

+ Viterbi backtrace

Thanks to Dan Jurafsky for these slides

. .

.

+ Summary
n The Forward Algorithm

n Dynamic programming
n Keeps partial results

n The likelihood of being in state t given the observations (t-1) and the model
n Sums over all possible paths to that state

n Finds the probability of the observation sequence

n The Viterbi Algorithm
n Dynamic programming

n Keeps partial results
n The max of the probabilities of the paths to that state

n Keeping a backpointer to which state was the max lets you trace back
n Finds the “best” path

n Note that hill climbing means this is not a guaranteed result

+ The Three Basic Problems for HMMs

n Problem 1 (Evaluation): Given the observation sequence
O=(o1o2…oT), and an HMM model F = (A,B), how do we
efficiently compute P(O| F), the probability of the
observation sequence, given the model

n Problem 2 (Decoding): Given the observation sequence
O=(o1o2…oT), and an HMM model F = (A,B), how do we
choose a corresponding state sequence Q=(q1q2…qT) that
is optimal in some sense (i.e., best explains the
observations)

n Problem 3 (Learning): How do we adjust the model
parameters F = (A,B) to maximize P(O| F)?

Jack Ferguson at IDA in the 1960s

+ Embedded Training

2/7/20CS 224S Winter 2007

26

+ The Learning Problem
nLearning: Given an observation sequence O

and the set of possible states in the HMM, learn
the HMM parameters A and B

nBaum-Welch = Forward-Backward Algorithm
(Baum 1972)
n Is a special case of the EM or Expectation-Maximization algorithm

(Dempster, Laird, Rubin)

nThe algorithm will let us train
n the transition probabilities A= {aij} and
n the emission probabilities B={bi(ot)} of the HMM

+ Intuition of HMMs
n For Markov chain, the observations are given, so there

are no observation probability

n For HMM, cannot compute these counts directly from
observed sequences

n Baum-Welch intuitions:
n Iteratively estimate the counts.

n Start with an estimate for aij and bk, iteratively improve the estimates
n Get estimated probabilities by:

n computing the forward probability for an observation
n dividing that probability mass among all the different paths that

contributed to this forward probability

+ Embedded Training
nGiven: phoneset, pronunciation lexicon, transcribed

wavefiles
n Build a whole sentence HMM for each sentence
n Initialize A (transition) probs to 0.5, or to zero
n Initialize B (observation) probs to global mean and variance
n Run multiple iterations of Baum Welch

n During each iteration, we compute forward and backward probabilities

n Use them to re-estimate A and B
n Run Baum-Welch til converge

2/7/20

29

Section 7.2. Overview of Hidden Markov Models

automata, we defined the probabilities bi(Ot) as 1.0 ifthe state i matched the
observation Ot and 0 if they didn't match. An HMM formally differs from a
Markov model by adding two more requirements. First, it has a separate set
of observation symbols 0, which is not drawn from the same alphabet as the
state set Q. Second, the observation likelihood function B is not limited to
the values 1.0 and 0; in an HMM the probability bi(Ot) can take on any value
from 0 to 1.0.

Word Model

Observation
Sequence
(spectral feature
vectors)

Figure 7.4 An HMM pronunciation network for the word need, showing
the transition probabilities, and a sample observation sequence. Note the ad-
dition of the output probabilities B. HMMs used in speech recognition usually
use self-loops on the states to model variable phone durations.

Figure 7.4 shows an HMM for the word need and a sample observa-
tion sequence. Note the differences from Figure 7.3. First, the observation
sequences are now vectors of spectral features representing the speech sig-
nal. Next, note that we've also allowed one state to generate multiple copies
of the same observation, by having a loop on the state. This loops allows
HMMs to model the variable duration of phones; longer phones require more
loops through the HMM.

In summary, here are the parameters we need to define an HMM:

• states: A set of states Q = q1 qz ... qN.
• transition probabilities: A set of probabilities A= ao1aoz ... anl ... ann·

Each aiJ represents the probability of transitioning from state i to state
j. The set of these is the transition probability matrixZ,

• observation likelihoods: A set of observation likelihoods B = bi(ot),

241

+ We update each cell
n Each cell of the forward algorithm trellis ⍺t(j)

n Represents the probability of being in state j
n After seeing the first t observations
n Given the automaton (model) λ

Thanks to Dan Jurafsky for these slides

+ The Backward algorithm

nWe define the backward probability as follows:

nThis is the probability of generating partial
observations Ot+1

T from time t+1 to the end, given
that the HMM is in state i at time t and (of course)
given F.

€

βt (i) = P(ot+1,ot+2,...oT ,|qt = i,Φ)

+ Inductive step of the backward algorithm

n This is the probability of generating partial observations Ot+1T
from time t+1 to the end, given that the HMM is in state i at time
t and (of course) given F.

n Computation of bt(i) by weighted sum of all successive values
bt+1

+ Intuition for re-estimation of aij

n We will estimate âij via this intuition:

n Numerator intuition:
n Assume we had some estimate of probability that a

given transition i èj was taken at time t in
observation sequence.

n If we knew this probability for each time t, we could
sum over all t to get expected value (count) for ièj.

€

ˆ a ij =
expected number of transitions from state i to state j

expected number of transitions from state i

+ Viterbi training
n Baum-Welch training says:

n We need to know what state we were in, to accumulate counts of a given output
symbol ot

n We’ll compute xi(t), the probability of being in state i at time t, by using forward-
backward to sum over all possible paths that might have been in state i and
output ot.

n Viterbi training says:
n Instead of summing over all possible paths, just take the single most likely path
n Use the Viterbi algorithm to compute this “Viterbi” path
n Via “forced alignment”

n Result
n Much faster than Baum-Welch
n But doesn’t work quite as well
n But the tradeoff is often worth it.

2/7/20CS 224S Winter 2007

34

+ Input to Baum-Welch

n O unlabeled sequence of observations

n Q vocabulary of hidden states

n For ice-cream task
n O = {1,3,2.,,,.}
n Q = {H,C}

+ Forward Algorithm (α)
n The dynamic programming computation of α

n Backward (β) is similar but works back from Stop.

Thanks to Dan Jurafsky for these slides

+ Eisner Spreadheet

Thanks to Dan Jurafsky for these slides

p(…|C) p(…|H) p(…|START)
p(1|…) 0.7 0.1
p(2|…) 0.2 0.2
p(3|…) 0.1 0.7
p(C|…) 0.8 0.1 0.5
p(H|…) 0.1 0.8 0.5
p(STOP|…) 0.1 0.1 0

Day Ice
Creams

α(C) α(H) β(C) β(H)

1 2 0.1 0.1 1.17798E-18 7.94958E-18

2 3 0.009 0.063 2.34015E-18 1.41539E-17

3 3 0.00135 0.03591 7.24963E-18 2.51453E-17
.

32 2 7.39756E-18 4.33111E-17 0.018 0.018

33 2 2.04983E-18 7.07773E-18 0.1 0.1

+ Eisner Spreadheet

Thanks to Dan Jurafsky for these slides

p(…|C) p(…|H) p(…|START)
p(1|…) 0.7 0.1
p(2|…) 0.2 0.2
p(3|…) 0.1 0.7
p(C|…) 0.8 0.1 0.5
p(H|…) 0.1 0.8 0.5
p(STOP|…) 0.1 0.1 0

Day Ice
Creams

α(C) α(H) β(C) β(H)

1 2 0.1 0.1 1.17798E-18 7.94958E-18

2 3 0.009 0.063 2.34015E-18 1.41539E-17

3 3 0.00135 0.03591 7.24963E-18 2.51453E-17

32 2 7.39756E-18 4.33111E-17 0.018 0.018

33 2 2.04983E-18 7.07773E-18 0.1 0.1

=C$14*E59*INDEX(C$11:C$13,$B59,1)+C$15*F59*INDEX(D$11:D$13,$B59,1)

E$14*INDEX(C$11:C$13,$B27,1)
p(C|Start) * p(2|C)

+ Eisner Spreadheet

Thanks to Dan Jurafsky for these slides

p(…|C) p(…|H) p(…|START)
p(1|…) 0.7 0.1
p(2|…) 0.2 0.2
p(3|…) 0.1 0.7
p(C|…) 0.8 0.1 0.5
p(H|…) 0.1 0.8 0.5
p(STOP|…) 0.1 0.1 0

Day Ice
Creams

α(C) α(H) β(C) β(H)

1 2 0.1 0.1 1.17798E-18 7.94958E-18

2 3 0.009 0.063 2.34015E-18 1.41539E-17

3 3 0.00135 0.03591 7.24963E-18 2.51453E-17

.
32 2 7.39756E-18 4.33111E-17 0.018 0.018

33 2 2.04983E-18 7.07773E-18 0.1 0.1

=C$14*E59*INDEX(C$11:C$13,$B59,1)+C$15*F59*INDEX(D$11:D$13,$B59,1)

P(H|Start) * H(2|C)

+ Eisner Spreadheet

Thanks to Dan Jurafsky for these slides

p(…|C) p(…|H) p(…|START)
p(1|…) 0.7 0.1
p(2|…) 0.2 0.2
p(3|…) 0.1 0.7
p(C|…) 0.8 0.1 0.5
p(H|…) 0.1 0.8 0.5
p(STOP|…) 0.1 0.1 0

Day Ice
Creams

α(C) α(H) β(C) β(H)

1 2 0.1 0.1 1.17798E-18 7.94958E-18

2 3 0.009 0.063 2.34015E-18 1.41539E-17

3 3 0.00135 0.03591 7.24963E-18 2.51453E-17

.
32 2 7.39756E-18 4.33111E-17 0.018 0.018

33 2 2.04983E-18 7.07773E-18 0.1 0.1

1A(C)*P(C|C)+ 1α (H)*P(C|H) * p(3|C

+ Eisner Spreadheet

Thanks to Dan Jurafsky for these slides

p(…|C) p(…|H) p(…|START)
p(1|…) 0.7 0.1
p(2|…) 0.2\ 0.2
p(3|…) 0.1 0.7
p(C|…) 0.8 0.1 0.5
p(H|…) 0.1 0.8 0.5
p(STOP|…) 0.1 0.1 0

Day Ice
Creams

α(C) α(H) β(C) β(H)

1 2 0.1 0.1 1.17798E-18 7.94958E-18

2 3 0.009 0.063 2.34015E-18 1.41539E-17

3 3 0.00135 0.03591 7.24963E-18 2.51453E-17

.
32 2 7.39756E-18 4.33111E-17 0.018 0.018

33 2 2.04983E-18 7.07773E-18 0.1 0.1

=C$14*E59*INDEX(C$11:C$13,$B59,1)+C$15*F59*INDEX(D$11:D$13,$B59,1)

p(STOP|C) p(STOP|H)

p(C|C)*33B(C)*p(2|C) + p(H|C)* 33B(H) * p(2|H)

+ Working through Eisner

α(C)*β (C α(H)*β (H) α(C)*β (C)
+α(H)*β(H)

p(�C) p(�H)

1.17798E-19 7.94958E-19 9.12756E-19 0.129 0.871

2.10613E-20 8.91695E-19 9.12756E-19 0.023 0.977

9.78701E-21 9.02969E-19 9.12756E-19 0.011 0.989

.
14.679 18.321 9.931 3.212 1.537

Thanks to Dan Jurafsky for these slides

SUM:
ICs p(�C,1) p(�C,2) p(�C,3) p(�H,1) p(�H,2) p(�H,3)

2 0 0.129 0 0 0.871 0

3 0 0 0.023 0 0 0.977

3 0 0 0.011 0 0 0.989

.

SUM 9.931 3.212 1.537 1.069 7.788 9.463

All the paths
through C
up to time t

All the paths
through H
up to time t

Total prob
of the data

Prob of getting to C/H at
time t given all the data

+ Working through Eisner

p(�C) p(�H)

0.129 0.871

0.023 0.977

0.011 0.989

.
3.212 1.537

Thanks to Dan Jurafsky for these slides

SUM:
ICs p(�C,1) p(�C,2) p(�C,3) p(�H,1) p(�H,2) p(�H,3)

2 0 0.129 0 0 0.871 0

3 0 0 0.023 0 0 0.977

3 0 0 0.011 0 0 0.989

.

SUM 9.931 3.212 1.537 1.069 7.788 9.463

p(…|C) p(…|H) p(…|START)

p(1|…) 0.454817043 0.21213604 0

p(2|…) 0.324427849 0.342217822 0

p(3|…) 0.220755108 0.445646139 0

SUM of Prob of going thru C when IC = 1

SUM of Prob of going thru C given all the data

+ Eisner results

n Start

n After 1 iteration

n After 10 iterations

Thanks to Dan Jurafsky for these slides

p(…|C) p(…|H)
p(1|…) 0.6643 0.0592
p(2|…) 0.2169 0.4297
p(3|…) 0.1187 0.5110

p(…|C) p(…|H)
p(1|…) 0.6407 0.0001
p(2|…) 0.1481 0.5342
p(3|…) 0.2112 0.4657

p(…|C) p(…|H)
p(1|…) 0.7 0.1
p(2|…) 0.2 0.2
p(3|…) 0.1 0.7

+ Back to Embedded Training

2/7/20CS 224S Winter 2007

45

How do we represent the likelihood of a
feature vector being in a particular state?

