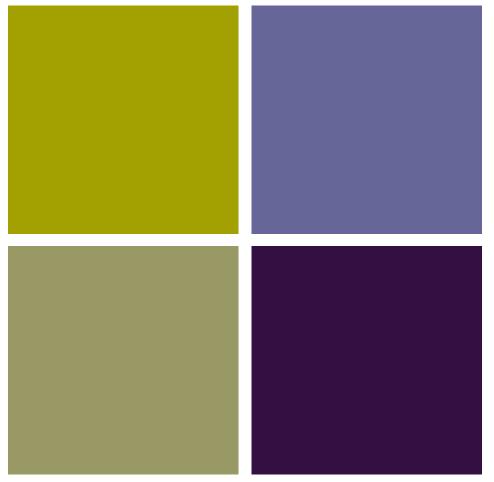


Speech Recognition Architecture:

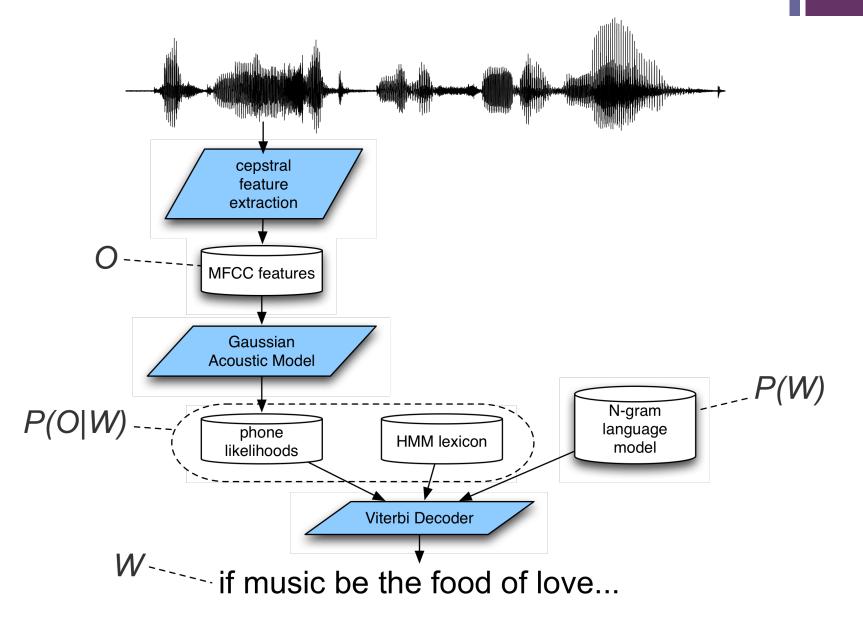
HMMs: Decoding and Learning



CS 136a Speech Recognition February 7, 2020 Professor Meteer

Thanks to Dan Jurafsky for these slides

Speech Recognition Architecture



+ ASR components

- Feature Extraction, MFCCs, start of AM
- HMMs, Forward, Viterbi,
- Baum-Welch (Forward-Backward)
- Acoustic Modeling and GMMs
- N-grams and Language Modeling
- Search and Advanced Decoding
- Dealing with Variation

+ The Three Basic Problems for HMMs Jack Ferguson at IDA in the 1960s

Problem 1 (Evaluation):

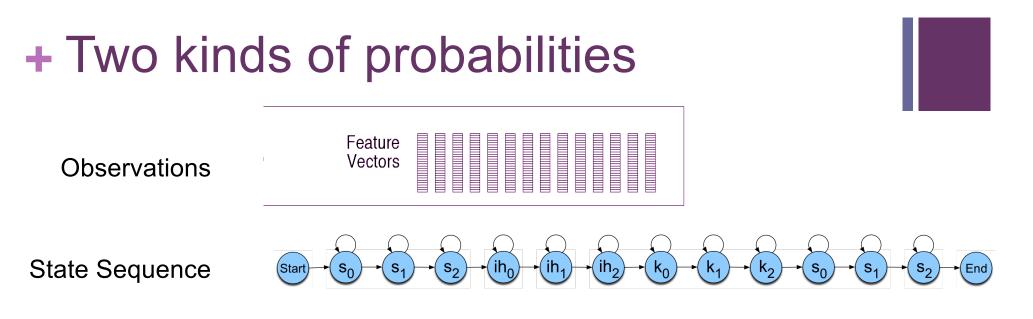
Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ = (A,B), how do we efficiently compute P(O| Φ), the probability of the observation sequence, given the model

Problem 2 (Decoding):

Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ
= (A,B), how do we choose a corresponding state sequence
Q=(q₁q₂...q_T) that is optimal in some sense (i.e., best explains the observations)

Problem 3 (Learning):

• How do we adjust the model parameters $\Phi = (A,B)$ to maximize P(O| Φ)?



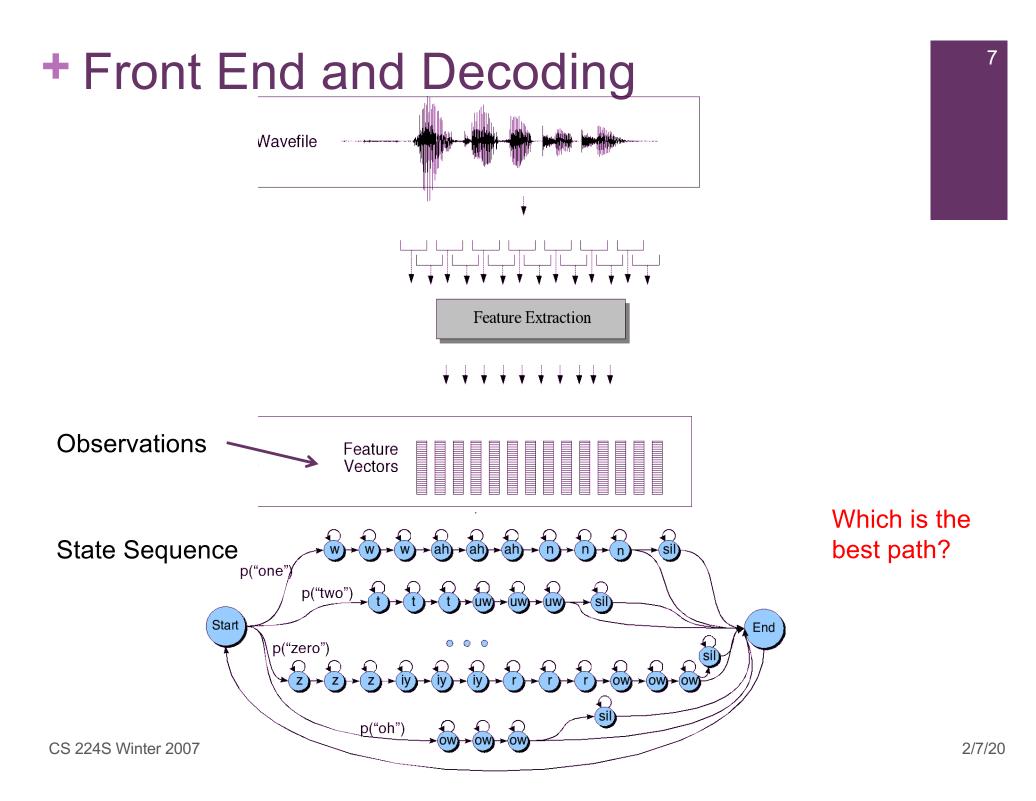
- **A:** State transition probabilities
 - What's the likelihood of being state i, given the previous state is state i-1
- **B**: Observation likelihood probabilities p(o_i|s_i)
 - Given this observation, what's the likelihood to be in the state

+ Where we are

Assume we have learned our observations and transition probabilities and can just look them up

We'll get to where those come from

- We have an audio signal (e.g. sequence of observations) and now
 - We want to know the sequence of states
 - Which will tell us the sequence of phonemes
 - Which will tell us the words
- Right now, we are only looking at states within a word
 - word sequence probabilities come from the language model



+ Decoding

Imagine we have a complete model that can give us both transition and observation probabilities.

This equation is guaranteed to give us the best state sequence

$$\hat{s}_1^n = \operatorname{argmax}_{s_1^n} P(s_1^n \mid o_1^n)$$

- We could just enumerate all paths given the input and use the model to assign probabilities to each.
 - Not a good idea (NT)
 - Luckily dynamic programming helps us here
- But how to make it operational? How to compute this value?
- Intuition of Bayesian classification:
 - Use Bayes rule to transform this equation into a set of other probabilities that are easier to compute

$$\operatorname{argmax}_{t_{1}^{n}} \frac{P(w_{1}^{n}|t_{1}^{n})P(t_{1}^{n})}{P(w_{1}^{n})} \qquad \hat{s}_{1}^{n} = \operatorname{argmax}_{s_{1}^{n}} \frac{P(o_{1}^{n} \mid s_{1}^{n})P(s_{1}^{n})}{P(o_{1}^{n})}$$

 $P(s \mid o) = \frac{P(o \mid s)P(s)}{P(o)}$

Observations and states

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(w_1^n | t_1^n) P(t_1^n) \quad \hat{s}_1^n = \operatorname*{argmax}_{s_1^n} P(o_1^n | s_1^n) P(s_1^n)$$

Using Bayes Rule

Words and tags

(example in the book)

P(x|y)

 $\hat{t}_1^n =$

 $\frac{r(y|x)P(x)}{P(y)}$

9

+ Using the Forward algorithm

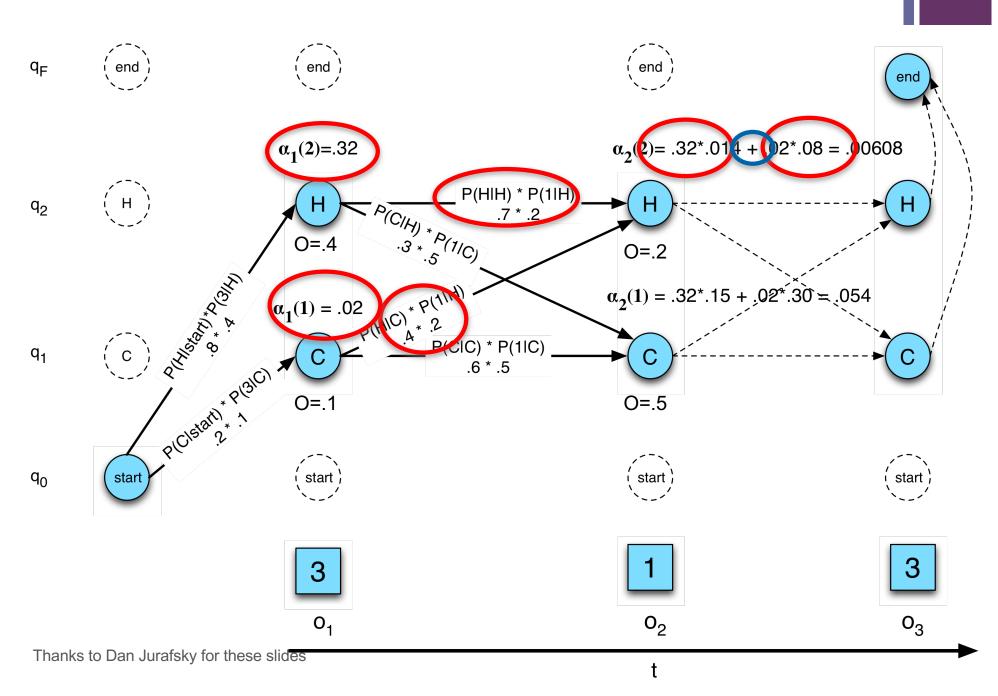
A kind of dynamic programming algorithm

- Just like Minimum Edit Distance
- Uses a table to store intermediate values

Idea:

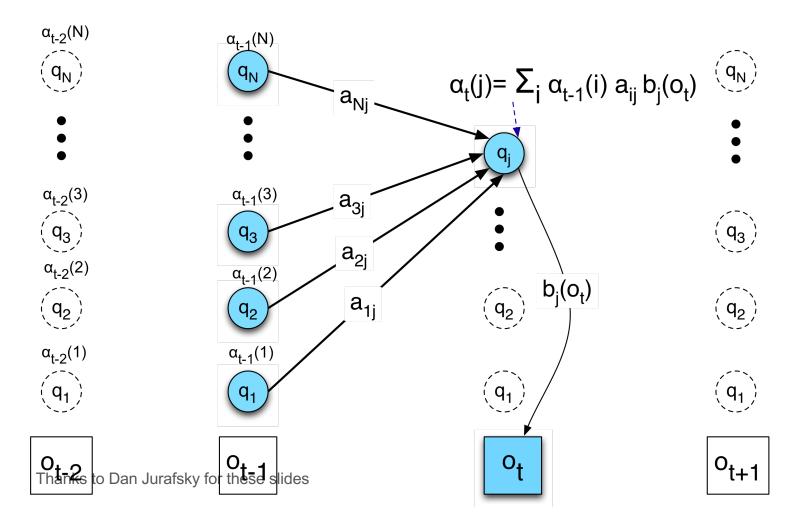
- Compute the likelihood of the observation sequence
- By summing over all possible hidden state sequences
- But doing this efficiently
 - By folding all the sequences into a single trellis

+ The Forward Trellis (quick look)



+ We update each cell

 $\begin{array}{ll} \alpha_{t-1}(i) & \text{the previous forward path probability from the previous time step} \\ a_{ij} & \text{the transition probability from previous state } q_i \text{ to current state } q_j \\ b_j(o_t) & \text{the state observation likelihood of the observation symbol } o_t \text{ given} \\ & \text{the current state } j \end{array}$



+ Decoding

Given an observation sequence and an HMM, the task of the decoder: find the best hidden state sequence

Given

- the observation sequence $O=(o_1o_2...o_T)$,
- and an HMM model $\Phi = (A,B)$,
- how do we choose a corresponding state sequence Q=(q₁q₂...q_T) that is optimal in some sense (i.e., best explains the observations)
- One possibility:
 - For each hidden state sequence Q compute P(O|Q)
 - Pick the highest one

■ Why not? N[⊤]

Thanks to Dan Jurafsky for these slides

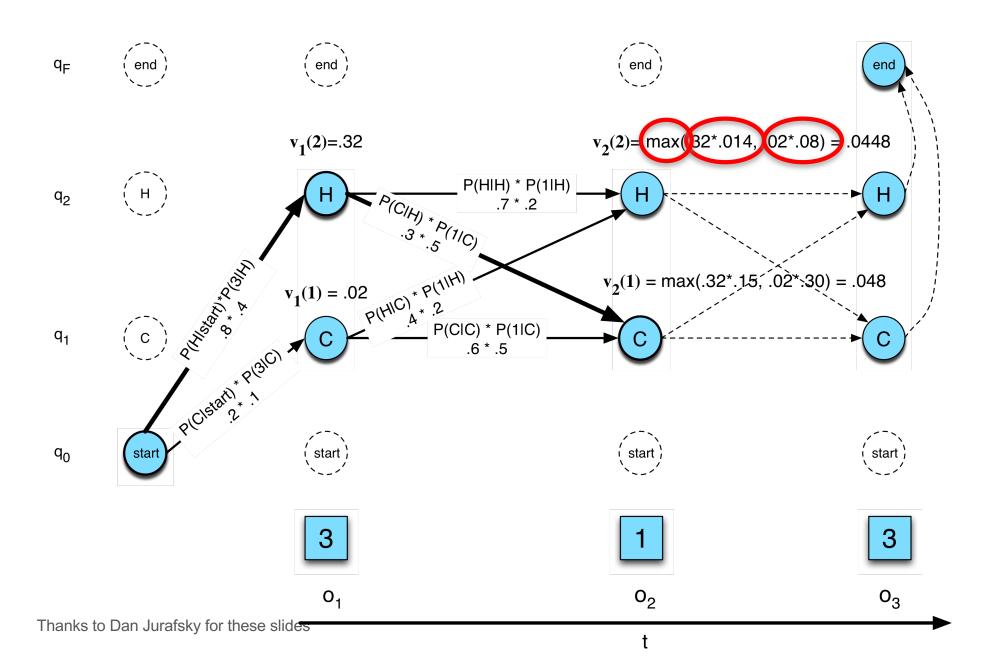
+ Instead: The Viterbi algorithm

- Dynamic programming algorithm similar to the Forward algorithm
- Viterbi intuition
 - We want to compute the joint probability of the observation sequence together with the best state sequence

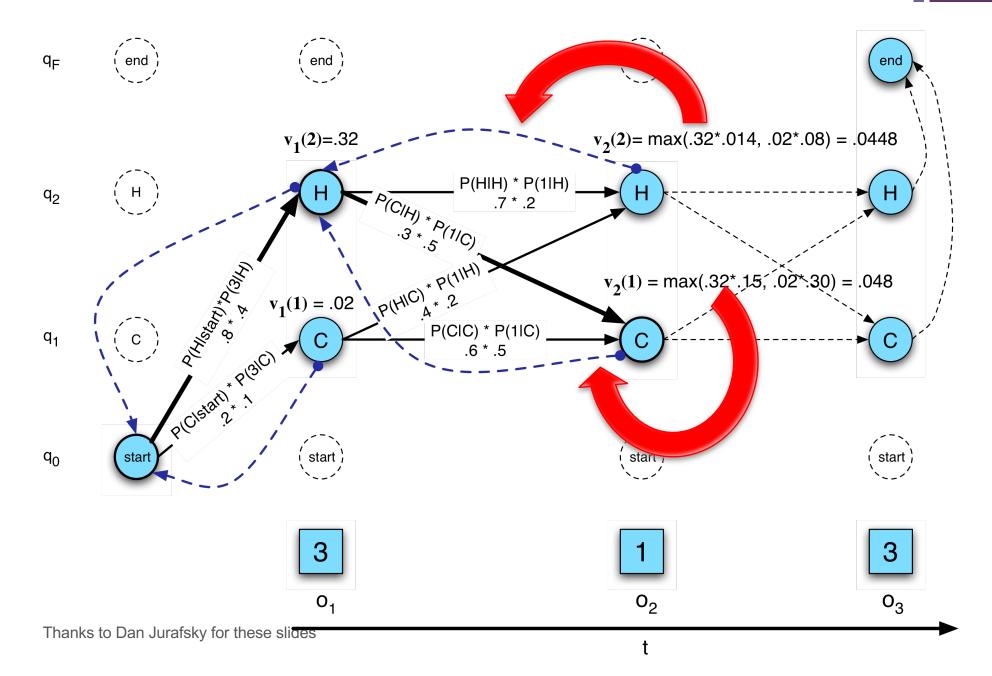
$$v_t(j) = \max_{q_0, q_1, \dots, q_{t-1}} P(q_0, q_1 \dots q_{t-1}, o_1, o_2 \dots o_t, q_t = j | \lambda)$$

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t)$$

+ The Viterbi trellis

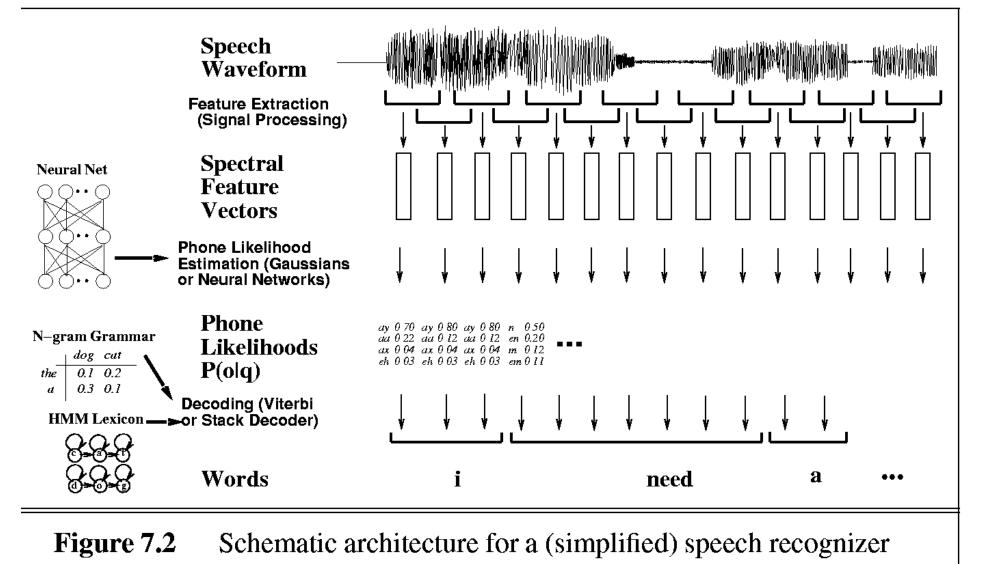


+ Viterbi backtrace



+ HMMs for Speech

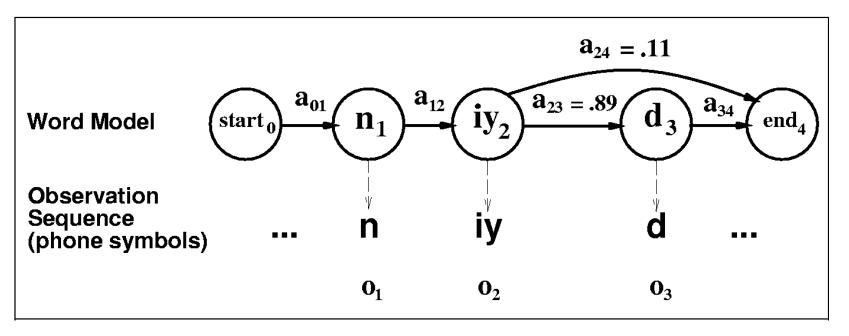
But let's return to think about speech



Thanks to Dan Jurafsky for these slides

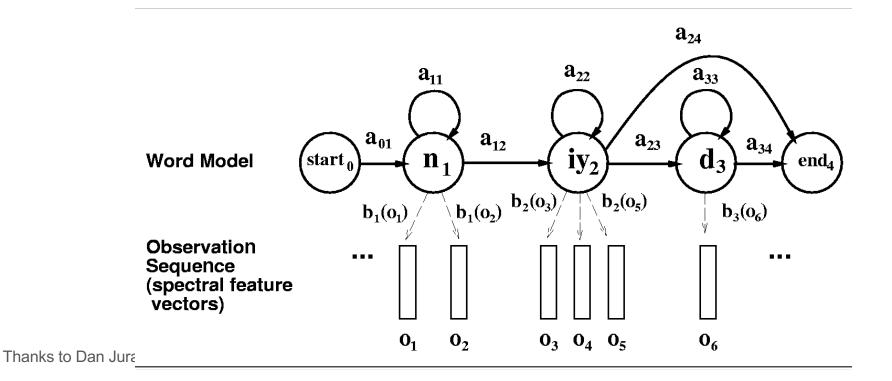
+ Word model

- A simple weighted automaton or Markov chain pronunciation network for the word need,
 - showing the transition probabilities, and a sample observation sequence.
 - The transition probabilities a x y between two states x and y are 1.0 unless otherwise specified.



BUT Observations are vectors not phonemes

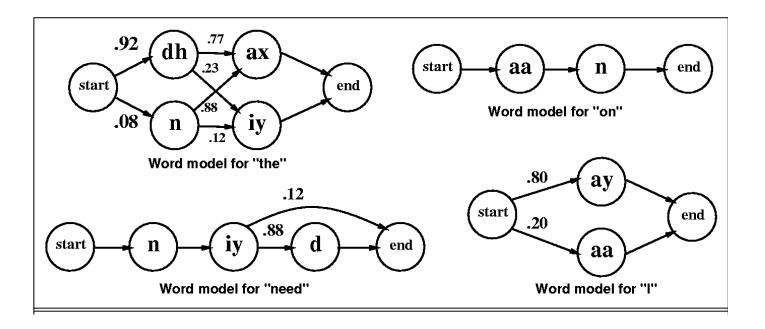
- An HMM pronunciation network for the word need,
 - showing the transition probabilities, and a sample observation sequence.
- Note the addition of the output probabilities *B*.
 - Self-loops on the states to model variable phone durations.



Input Output

[aa n iy dh ax] *I need the*

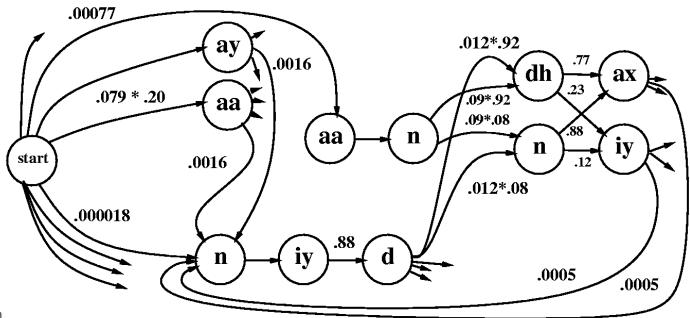
Pronunciation networks for the words *I*, on, need, and the. All networks (especially the) are significantly simplified.



+ The transition probabilities

- Single automaton made from the words I, need, on, and the.
 - The arcs between words have probabilities computed from the bigrams in the table below

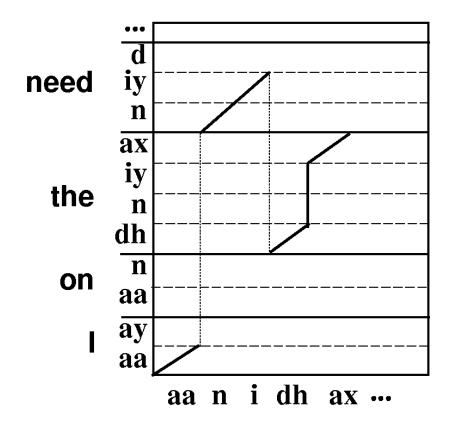
I need	0.0016	need need	0.000047	# Need	0.000018
I the	0.00018	need the	0.012	# The	0.016
I on	0.000047	need on	0.000047	# On	0.00077
ΙI	0.039	need I	0.000016	# I	0.079



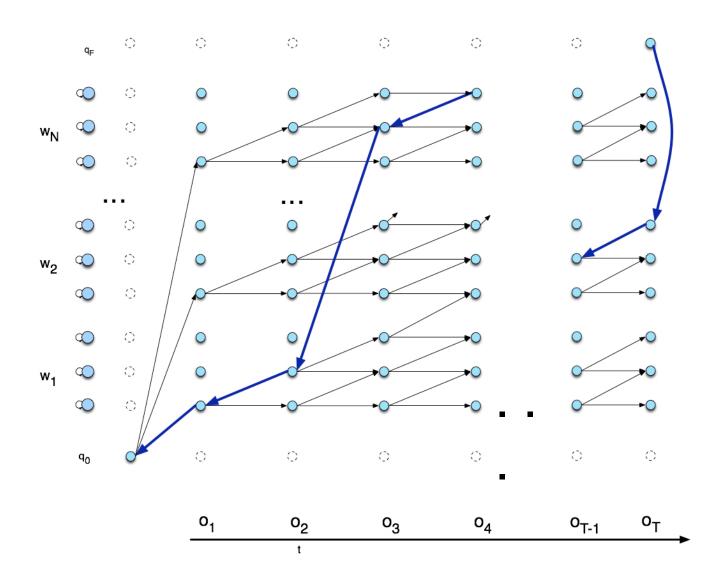
Thanks to Dan

+ Viterbi on speech

An illustration of the results of the Viterbi algorithm used to find the most-likely phone sequence (and hence estimate the most-likely word sequence).



+ Viterbi backtrace



Thanks to Dan Jurafsky for these slides

+ Summary

The Forward Algorithm

- Dynamic programming
 - Keeps partial results
 - The likelihood of being in state t given the observations (t-1) and the model
 - Sums over all possible paths to that state
- Finds the probability of the observation sequence

The Viterbi Algorithm

- Dynamic programming
 - Keeps partial results
 - The **max** of the probabilities of the paths to that state
 - Keeping a backpointer to which state was the max lets you trace back
- Finds the "best" path
 - Note that hill climbing means this is not a guaranteed result

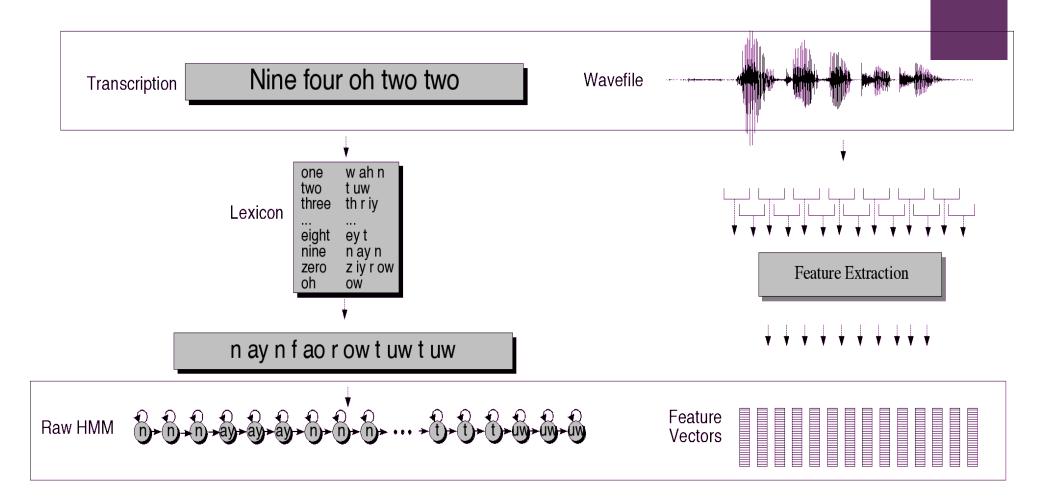
+ The Three Basic Problems for HMMs

Jack Ferguson at IDA in the 1960s

- Problem 1 (Evaluation): Given the observation sequence $O=(o_1o_2...o_T)$, and an HMM model $\Phi = (A,B)$, how do we efficiently compute $P(O \mid \Phi)$, the probability of the observation sequence, given the model
- Problem 2 (Decoding): Given the observation sequence O=(o₁o₂...o_T), and an HMM model Φ = (A,B), how do we choose a corresponding state sequence Q=(q₁q₂...q_T) that is optimal in some sense (i.e., best explains the observations)

Problem 3 (Learning): How do we adjust the model parameters $\Phi = (A,B)$ to maximize $P(O | \Phi)$?

+ Embedded Training



26

+ The Learning Problem

Learning: Given an observation sequence O and the set of possible states in the HMM, learn the HMM parameters A and B

Baum-Welch = Forward-Backward Algorithm (Baum 1972)

 Is a special case of the EM or Expectation-Maximization algorithm (Dempster, Laird, Rubin)

The algorithm will let us train

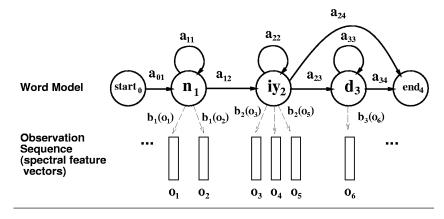
- the transition probabilities A= {a_{ij}} and
- the emission probabilities $B=\{b_i(o_t)\}$ of the HMM

+ Intuition of HMMs

- For Markov chain, the observations are given, so there are no observation probability
- For HMM, cannot compute these counts directly from observed sequences
- Baum-Welch intuitions:
 - Iteratively estimate the counts.
 - Start with an estimate for a_{ij} and b_k , iteratively improve the estimates
 - Get estimated probabilities by:
 - computing the forward probability for an observation
 - dividing that probability mass among all the different paths that contributed to this forward probability

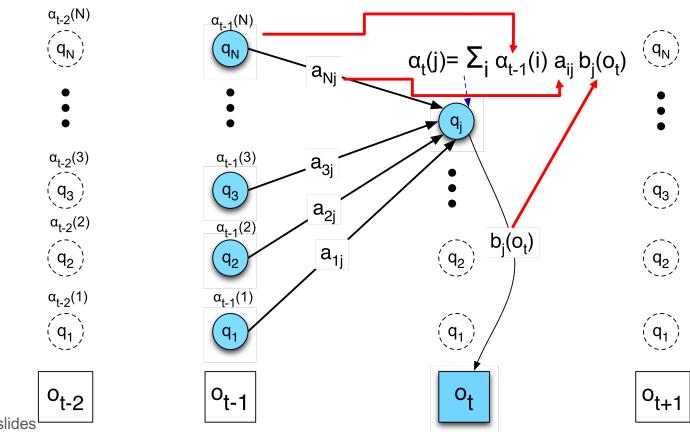
+ Embedded Training

- Given: phoneset, pronunciation lexicon, transcribed wavefiles
 - Build a whole sentence HMM for each sentence
 - Initialize A (transition) probs to 0.5, or to zero
 - Initialize B (observation) probs to global mean and variance
 - Run multiple iterations of Baum Welch
 - During each iteration, we compute forward and backward probabilities
 - Use them to re-estimate A and B
 - Run Baum-Welch til converge



+ We update each cell

- Each cell of the forward algorithm trellis $\alpha_t(j)$
 - Represents the probability of being in state j
 - After seeing the first t observations
 - Given the automaton (model) λ



Thanks to Dan Jurafsky for these slides

+ The Backward algorithm

• We define the **backward probability** as follows:

$$\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots, o_T, |q_t = i, \Phi)$$

This is the probability of generating partial observations O_{t+1}^{T} from time t+1 to the end, given that the HMM is in state *i* at time t and (of course) given Φ .

Inductive step of the backward algorithm

- This is the probability of generating partial observations Ot+1T from time t+1 to the end, given that the HMM is in state i at time t and (of course) given Φ.
- Computation of β t(i) by weighted sum of all successive values β**t**+1 $\beta_{t+1}(N)$ $\beta_t(i) = \sum_j \beta_{t+1}(j) a_{ij} b_j(o_{t+1})$ (q_N) **q**_N a_{iN} a_{i3} $\beta_{t+1}(3)$ $\langle q_3 \rangle$ q_3 $b_2(o_{t+1})$ a_{i2} $\beta_{t+1}(2)$ $b_2(o_{t+1})$ a_{i1} (q_2) (q₂) $b_2(o_{t+1})$ q_2 $\beta_{t+1}(1)$ $b_1(o_{t+1})$ $\langle q_1 \rangle$ $\langle q_1 \rangle$ q_1 o_{t-1} ot

+ Intuition for re-estimation of a_{ij}

• We will estimate \hat{a}_{ij} via this intuition:

 $\hat{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$

Numerator intuition:

- Assume we had some estimate of probability that a given transition i →j was taken at time t in observation sequence.
- If we knew this probability for each time t, we could sum over all t to get expected value (count) for i→j.

+ Viterbi training

- Baum-Welch training says:
 - We need to know what state we were in, to accumulate counts of a given output symbol o_t
 - We'll compute ξi(t), the probability of being in state i at time t, by using forwardbackward to sum over all possible paths that might have been in state i and output o_t.
- Viterbi training says:
 - Instead of summing over all possible paths, just take the single most likely path
 - Use the Viterbi algorithm to compute this "Viterbi" path
 - Via "forced alignment"
- Result
 - Much faster than Baum-Welch
 - But doesn't work quite as well
 - But the tradeoff is often worth it.

+ Input to Baum-Welch

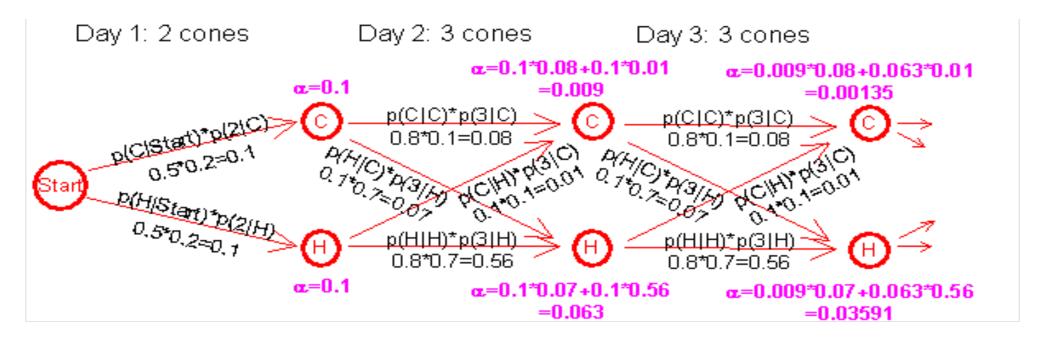
- O unlabeled sequence of observations
- Q vocabulary of hidden states

- For ice-cream task
 - O = {1,3,2.,,,.}
 - Q = {H,C}

+ Forward Algorithm (α)

 \blacksquare The dynamic programming computation of α

Backward (β) is similar but works back from Stop.



+ Eisner Spreadheet

	p(C)	p(H)	p(… START)
p(1)	0.7	0.1	
p(2)	0.2	0.2	
p(3)	0.1	0.7	
p(C)	0.8	0.1	0.5
p(H)	0.1	0.8	0.5
p(STOP …)	0.1	0.1	0

	Day	lce Creams	α(C)	α(Η)	β(C)	β(H)
	1	2	0.1	0.1	1.17798E-18	7.94958E-18
	2	3	0.009	0.063	2.34015E-18	1.41539E-17
	3	3	0.00135	0.03591	7.24963E-18	2.51453E-17
	•••			•••		• • •
	32	2	7.39756 _{E-18}	4.33111E-17	0.018	0.018
Th	33	2	2.04983E-18	7.07773E-18	0.1	0.1

=C\$14*E59*INDEX(C\$11:C\$13,\$B59,1)+C\$15*F59*INDEX(D\$11:D\$13,\$B59,1)

+ Eisner Spreadheet

			p(C) p(H)	p(START)	
	p(1)	0.7 ().1		
	p(2)	0.2 0).2		
	p(3)	0.1 ().7		
	p(C)	0.8 ().1	0.5	
					0.5	
		t) * p(2 C)	\$13,\$B27,1)		0	
	Day	lce	cı(C)	α(H)	β(C)	β(H)
	Day	Creams				
	1	2	0.1	0.1	1.17798E-18	7.94958E-18
	2	3	0.009	0.063	2.34015E-18	1.41539E-17
	3	3	0.00135	0.03591	7.24963E-18	2.51453E-17
	32	2	7.39756 _{E-18}	4.33111E-17	0.018	0.018
Tha	33	2	2.04983E-18	7.07773E-18	0.1	0.1

=C\$14*E59*INDEX(C\$11:C\$13,\$B59,1)+C\$15*F59*INDEX(D\$11:D\$13,\$B59,1)

+ Eisner Spreadheet

			p(C) p((H)	p(START)		
	p(1)	0.7	0.1			
	p(2)	0.2	0.2			
	p(3)	0.1	0.7			
	p(C	S)	0.8	0.1	0.5		
	p(⊢	l)	0.1	0.8	0.5		
P(I	H Start)	* H(2 C)			0		
	Day	lce Creams	α(C)	α(Η)	β(C)	β(H)	
	1	2	0.1	0.1	1.17798E-18	7.94958E-18	
	2	3	0.009	0.063	2.34015E-18	1.41539E-17	
	3	3	0.00135	0.03591	7.24963E-18	2.51453E-17	
	32	2	7.39756E-18	4.33111E-17	0.018	0.018	
Tha	33	2	2.04983E-18	7.07773E-18	0.1	0.1	

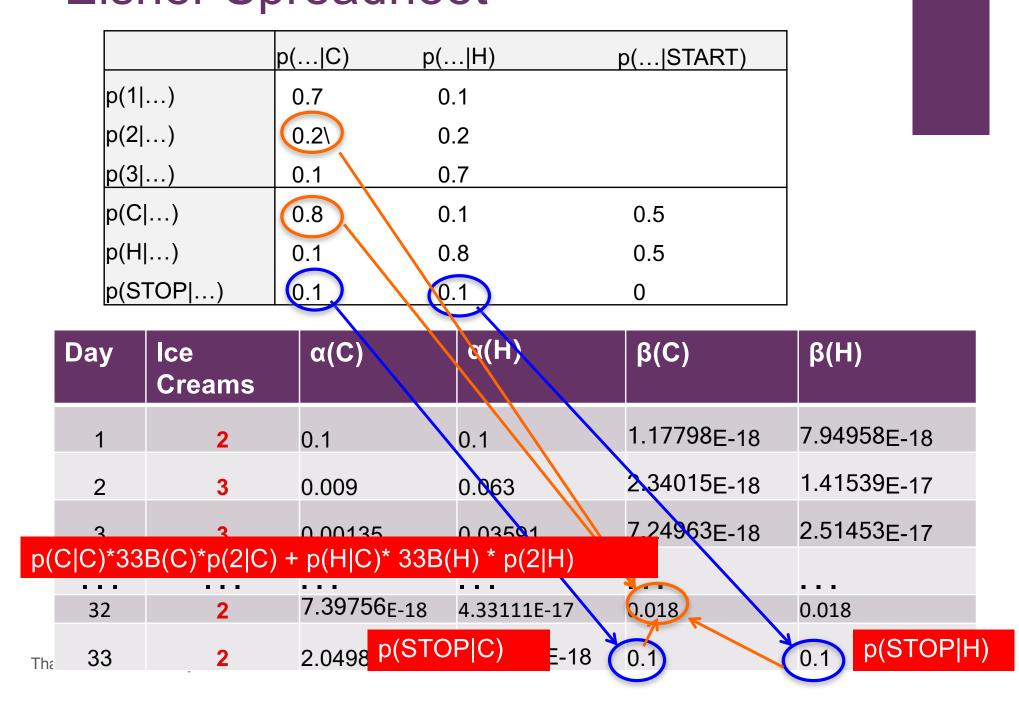
+ Eisner Spreadheet

	p(C)	p(H)	p(START)
p(1)	0.7	0.1	
p(2)	0.2	0.2	
p(3)	0.1	0.7	
p(C)	0.8	0.1	0.5
p(C …) p(H …)	0.1	0.8	0.5
		n/2 C	0

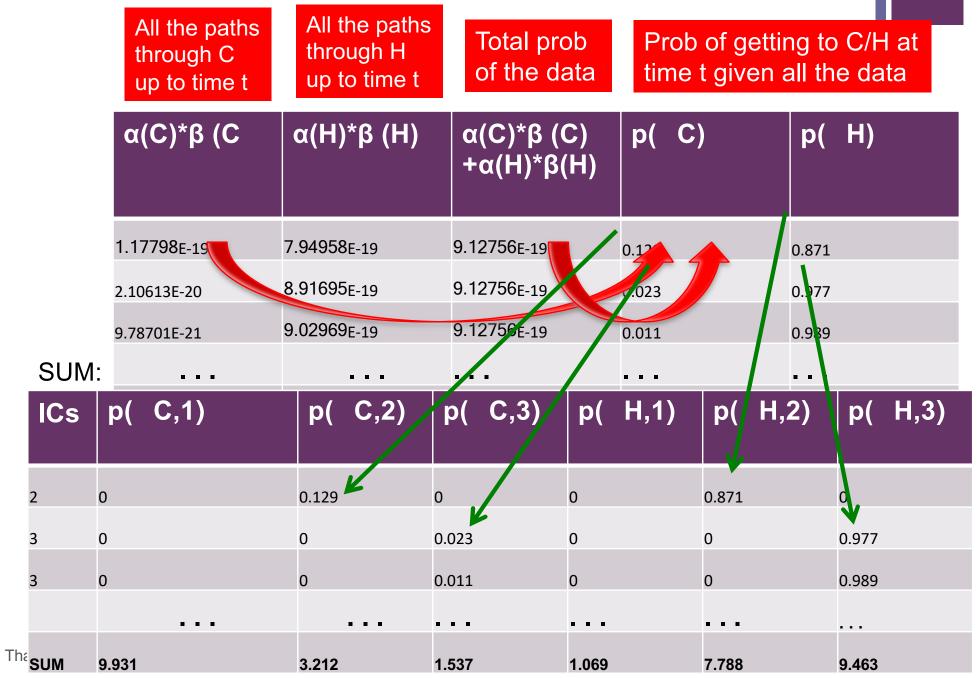
1A(C)*P(C|C)+ 1α (H)*P(C|H) * p(3|C

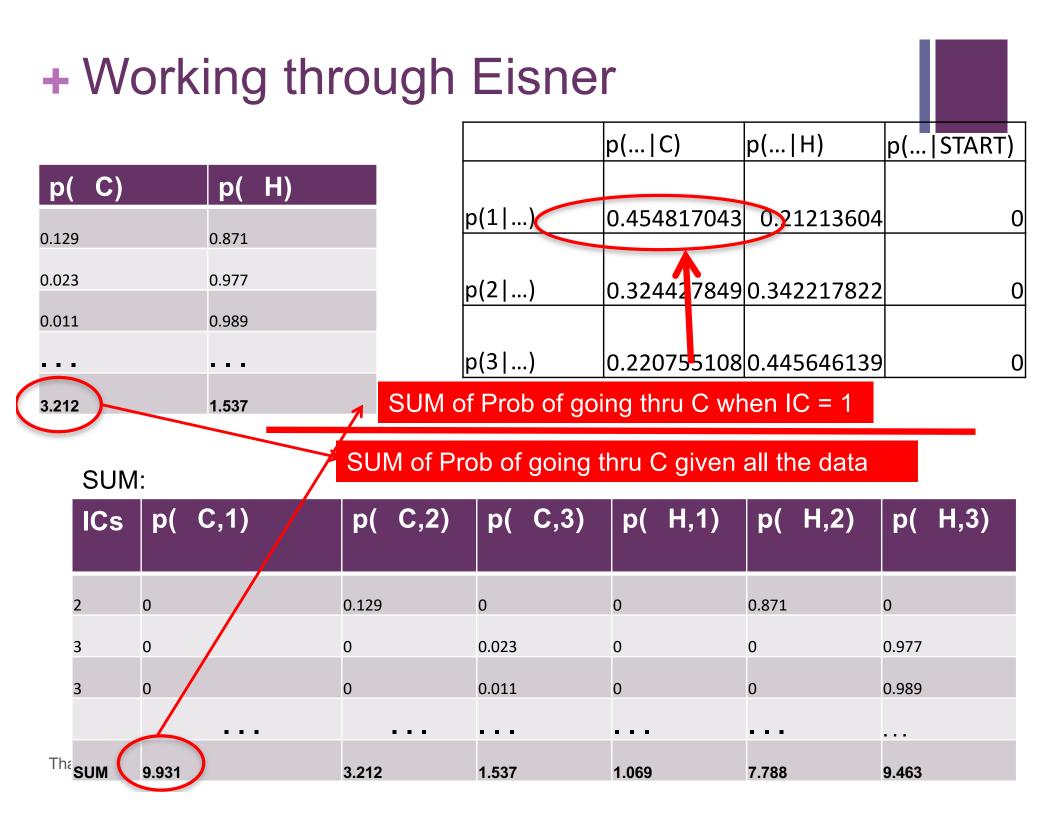
	Day	lce Creams	a(C)	α(H)	β(C)	β(H)
	1	2	0.1	0.1	1.17798E-18	7.94958E-18
	2	3	0.009	0.063	2.34015E-18	1.41539E-17
	3	3	0.00135	0.03591	7.24963E-18	2.51453E-17
	32	2	7.39756 _{E-18}	4.33111E-17	0.018	0.018
Tha	33	2	2.04983E-18	7.07773E-18	0.1	0.1

=C\$14*E59*INDEX(C\$11:C\$13,\$B59,1)+C\$15*F59*INDEX(D\$11:D\$13,\$B59,1) + Eisner Spreadheet



+ Working through Eisner





+ Eisner results

Start

	p(C)	p(H)
p(1)	0.7	0.1
p(2)	0.2	0.2
p(3)	0.1	0.7

After 1 iteration

	p(C)	p(H)
p(1)	0.6643	0.0592
p(2)	0.2169	0.4297
p(3)	0.1187	0.5110

After 10 iterations

	p(C)	p(H)
p(1)	0.6407	0.0001
p(2)	0.1481	0.5342
p(3)	0.2112	0.4657

+ Back to Embedded Training

