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+ ASR components

m Feature Extraction, MFCCs, start of AM
m HMMSs, Forward, Viterbi,

m Baum-Welch (Forward-Backward)

m Acoustic Modeling and GMMs

m N-grams and Language Modeling

m Search and Advanced Decoding

m Dealing with Variation



+ The Three Basic Problems for HMMs |.
Jack Ferguson at IDA in the 1960s

m Problem 1 (Evaluation):

m Given the observation sequence O=(040,...07), and an HMM model ©
= (A,B), how do we efficiently compute P(O| @), the probability of the
observation sequence, given the model

m Problem 2 (Decoding):

m Given the observation sequence O=(040,...07), and an HMM model ©
= (A,B), how do we choose a corresponding state sequence

Q=(g19»...97) that is optimal in some sense (i.e., best explains the
observations)

m Problem 3 (Learning):

= How do we adjust the model parameters ® = (A,B) to maximize P(O|
D )?

Thanks to Dan Jurafsky for these slides



+ Two kinds of probabilities

ovseraions % [ {IFIRARINN

State Sequence

m A: State transition probabilities

m What's the likelihood of being state i, given the previous state is
state i-1

m B: Observation likelinood probabilities p(ois;)
m Given this observation, what's the likelihood to be in the state

Thanks to Dan Jurafsky for these slides



+ Where we are |.

m Assume we have learned our observations and transition
probabilities and can just look them up

= We'll get to where those come from

m \We have an audio signal (e.g. sequence of observations)
and now

m We want to know the sequence of states
m Which will tell us the sequence of phonemes
m Which will tell us the words

m Right now, we are only looking at states within a word
= word sequence probabilities come from the language model

Thanks to Dan Jurafsky for these slides



*+ Front End and Decoding
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+ Decoding

m Imagine we have a complete model that can give us both transition
observation probabilities.

m This equation is guaranteed to give us the best state sequence
~n n n
§; =argmax, P(s; o))

m \We could just enumerate all paths given the input and use the model to
assign probabilities to each.

m Not a good idea (NT)
m Luckily dynamic programming helps us here

m But how to make it operational? How to compute this value?

m Intuition of Bayesian classification:

m Use Bayes rule to transform this equation into a set of other probabilities that are
easier to compute

Speech and Language Processing - Jurafsky and Martin 2/7/20



+ Using Bayes Rule |l

P(ols)P(s
P(slo) = (015)P(s)
P(o)
Words and tags
(example in the book) | Observations and states
., PWItHP(t]) . P(o; s/ )P(s)")
l‘n:ar max 111 1 s =argmax , : 1n 1
: gln P (\’Vn) 1 i ! P(o;)
1 1
{1 = argmax P(W}|t])P(1}) & =argmax, P(o] Is))P(s)
t]
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+ Using the Forward algorithm |.

m A kind of dynamic programming algorithm
m Just like Minimum Edit Distance
m Uses a table to store intermediate values

m|dea:
= Compute the likelihood of the observation sequence
= By summing over all possible hidden state sequences
= But doing this efficiently

m By folding all the sequences into a single trellis

Thanks to Dan Jurafsky for these slides



+ The Forward Trellis (quick look)
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+ We update each cell I.

o;_1(i)  the previous forward path probability from the previous time step
¥ the transition probability from previous state ¢; to current state ¢g;

bj(or) the state observation likelihood of the observation symbol o; given
the current state |
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+ Decoding

m Given an observation sequence and an HMM, the tas
of the decoder: find the best hidden state sequence

m Given
m the observation sequence O=(010,...07),

= and an HMM model ® = (A,B),

m how do we choose a corresponding state sequence
Q=(q19,...97) that is optimal in some sense (i.e., best explains
the observations)

m One possibility:
® For each hidden state sequence Q compute P(O|Q)
m Pick the highest one

m\Why not? NT

Thanks to Dan Jurafsky for these slides



+ Instead: The Viterbi algorithm |.

m Dynamic programming algorithm similar to the Forward
algorithm

m Viterbi intuition

= We want to compute the joint probability of the observation sequence
together with the best state sequence

v(j)= max P(q0,91.--91—1,01,02...0¢,qr = j|A)
q0.91.----9r—1

N

vi(j) = I}Efivt—l(i) aij bj(o)

Thanks to Dan Jurafsky for these slides



+ The Viterbi trellis
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+ Viterbi backtrace
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+ HMMs for Speech |.

m But let’s return to think about speech
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+ Word model |.

m A simple weighted automaton or Markov chain
pronunciation network for the word need,

m showing the transition probabilities, and a sample observation
sequence.

m The transition probabilities a x y between two states x and y are 1.0
unless otherwise specified.

Word Model

Observation \l | !
Sequence n
(phone symbols)

Thanks to Dan Jurafsky for these slides



+ BUT Observations are vectors not phonemes

m An HMM pronunciation network for the word need,

= showing the transition probabilities, and a sample observation
sequence.

m Note the addition of the output probabilities B.

m Self-loops on the states to model variable phone durations.

Word Model

Observation
Sequence
(spectral feature
vectors)

Thanks to Dan Jure




+ Example Input Output | .

[aa n iy dh ax] I need the

m Pronunciation networks for the words /, on, need, and the.
All networks (especially the) are significantly simplified.

2050 (s aa)—(n )
®°‘@ Word model for "on"
Jd2

Word model for "the"”
.80
A2 @
(s} "s“ (D= (2a) :

Word model for "need"” Word model for "'I"”
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+ The transition probabilities |.

m Single automaton made from the words /, need, on, and the.

m The arcs between words have probabilities computed from the bigrams in
the table below

I need 0.0016 need need 0.000047 | #Need 0.000018
I the 0.00018 need the 0.012 # The 0.016

I on 0.000047 | need on 0.000047| #On 0.00077
I 0.039 need I 0.000016| #I1 0.079

00077

012%.92

/Y an) 2 ax)
’ 09%.,08
(o
n iy )
A2

.012%.08

Oa020
0005 0005

.000018
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+ Viterbi on speech |.

m An illustration of the results of the Viterbi algorithm
used to find the most-likely phone sequence (and
hence estimate the most-likely word sequence).

aa n i dh ax ...

Thanks to Dan Jurafsky for these slides



+ Viterbi backtrace
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+ Summary |.

m The Forward Algorithm
= Dynamic programming
m Keeps partial results
m The likelihood of being in state t given the observations (t-1) and the model
m Sums over all possible paths to that state
= Finds the probability of the observation sequence

m [he Viterbi Algorithm
= Dynamic programming
m Keeps partial results
= The max of the probabilities of the paths to that state
m Keeping a backpointer to which state was the max lets you trace back
m Finds the “best” path
m Note that hill climbing means this is not a guaranteed result



+ The Three Basic Problems for HMMs |.

Jack Ferguson at IDA in the 1960s

m Problem 1 (Evaluation): Given the observation sequence
0O=(040,...071), and an HMM model ® = (A,B), how do we
efficiently compute P(O| @), the probability of the
observation sequence, given the model

m Problem 2 (Decoding): Given the observation sequence
0O=(040,...071), and an HMM model ® = (A,B), how do we
choose a corresponding state sequence Q=(q49,...qy) that
is optimal in some sense (i.e., best explains the
observations)

Problem 3 (Learning): How do we adjust the model
parameters ® = (A,B) to maximize P(O| @ )?



+ Embedded Training
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+ The Learning Problem |.

mLearning: Given an observation sequence O
and the set of possible states in the HMM, learn
the HMM parameters A and B

m Baum-Welch = Forward-Backward Algorithm
(Baum 1972)

m |s a special case of the EM or Expectation-Maximization algorithm
(Dempster, Laird, Rubin)
m [ he algorithm will let us train
= the transition probabilities A= {a;} and
= the emission probabilities B={b,(o;)} of the HMM



+ Intuition of HMMs |.

m For Markov chain, the observations are given, so there
are no observation probability

m For HMM, cannot compute these counts directly from
observed sequences

m Baum-Welch intuitions:
m |teratively estimate the counts.
m Start with an estimate for a; and by, iteratively improve the estimates
m Get estimated probabilities by:

m computing the forward probability for an observation

m dividing that probability mass among all the different paths that
contributed to this forward probability



+ Embedded Training |

m Given: phoneset, pronunciation lexicon, transcribed
wavefiles
= Build a whole sentence HMM for each sentence

= |nitialize A (transition) probs to 0.5, or to zero

= Initialize B (observation) probs to global mean and variance

= Run multiple iterations of Baum Welch
m During each iteration, we compute forward and backward probabilities
= Use them to re-estimate Aand B

= Run Baum-Welch til converge

27120



+ We update each cell

m Each cell of the forward algorithm trellis o(j)
m Represents the probability of being in state |

m After seeing the first t observations
= Given the automaton (model) A
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+ The Backward algorithm

m \We define the backward probability as follows:
ﬁf (l) - P(0t+1’0t+2""OT 9| qt = l,(I))

m This is the probability of generating partial
observations O, " from time t+17 to the end, given
that the HMM is in state i/ at time t and (of course)
given @.



+ Inductive step of the backward algorithm |.

m This is the probability of generating partial observations Ot+1T
from time t+1 to the end, given that the HMM is in state i at time
t and (of course) given O.

m Computation of Bt(i) by weighted sum of all successive values
Bt+1

Brsq(N)

NEERN
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1 q )
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+ Intuition for re-estimation of a; |.

m We will estimate §; via this intuition:

~  expected number of transitions from state i to state j
ij =

expected number of transitions from state i

m Numerator intuition:

= Assume we had some estimate of probability that a
given transition i =»j was taken at time t in
observation sequence.

= If we knew this probability for each time t, we could
sum over all t to get expected value (count) for i=»;.



+ Viterbi training |

m Baum-Welch training says:

m \We need to know what state we were in, to accumulate counts of a given output
symbol o,

m We’'ll compute &i(t), the probability of being in state i at time t, by using forward-
backward to sum over all possible paths that might have been in state i and
output o;.

m Viterbi training says:
m Instead of summing over all possible paths, just take the single most likely path
m Use the Viterbi algorithm to compute this “Viterbi” path
m Via “forced alignment”

m Result
m Much faster than Baum-Welch
m But doesn’t work quite as well
m But the tradeoff is often worth it.
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+ Input to Baum-Welch |.

mO unlabeled sequence of observations

mQ vocabulary of hidden states

m For ice-cream task
= 0={1,3.2,,1}
= Q={H,C}



+ Forward Algorithm (a)

m The dynamic programming computation of a
m Backward (3) is similar but works back from Stop.

Day 1. 2 cones Day 2. 3 cones Day 3. 3 cones
a=0.1"0.08+0.10.01 a=0.009"0.08+0.063"0.01
a=0.1 =0.009 =0.00135
@ p(CICY*p(3IC) ~ p(CICY*p(3IC) ~ —
" 0.8*0.1=0.08 0.8*0.1=0.08 ~a
0270 Ak ) Ay )
,@ S. Q7 ARNLEE N C»@ \,‘,‘gﬁ’\
HSf&r ) *-
0 5 Ies pd 7
50, 2., ; @ @ p(HIH"p(3|H) —
) 0.8*0.7=0.56 0.8*0.7=0.56
a=0.1 a=0.1"0.07+0.1°0.56 a=0.009"0.07 +0.0630.56
=0.063 =0.03591

Thanks to Dan Jurafsky for these slides



+ Eisner Spreadheet

p(...|C) p(...|H) p(...|START)
p(1]...) 0.7 0.1
p2|...) 0.2 0.2
P@|...) 0.1 0.7
p(C|...) 0.8 0.1 0.5
p(H|...) 0.1 0.8 0.5
P(STOP|...

Ice a(C) a(H) B(C)
Creams

1.17798E-18  7.94958E-18

2 3 0.009 0.063 2.34015e-18  1.41539g-17
3 3 0.00135 0.03591 7.24963E-18  2.51453E-17
32 2 7.39756E-18 4.33111E-17 0.018 0.018

The
33 2 2.04983E-18 7.07773E-18 0.1 0.1



=C$14*E59*INDEX(C$11:C$13,$B59,1)+C$15*F59*INDEX(D$11:D$13,$B59,1)
+ Eisner Spreadheet

0(...|C) p(...|H) o(...|START)
p(1]...) 0.7 0.1
p(2!... €2 0.2
P@E|...) 0. 0.7
p(Cl...)

N ( a
E$14*INDEX(C$11:C$13,$B27,1

p(C|Start) * p(2|C)

1 2 0.1 1.17798€E-18  7.94958E-18

2 3 0.009 0.063 2.34015E-18 1.41539E-17
3 3 0.00135 0.03591 7.24963E-18  2.51453E-17
32 2 7.39756E-18 4.33111E-17 0.018 0.018

e 2 2 04983E-18 7.07773E-18 0.1 0.1



=C$14*E59*INDEX(C$11:C$13,$B59,1)+C$15*F59*INDEX(D$11:D$13,$B59,1)
+ Eisner Spreadheet

p(...|C) p(...|H) p(...|START)
p(1]...) 0.7 0.1
p(2.. 0.2 @
P@3|...) 0.1 0l
p(C|...) 0.8 0.1 0.5
p(HI...) 0.1 0.
P(H|Start) * H(2|C)
Ice a(C) B(C) B(H)
Creams
1 2 0.1 1.17798E-18 7.94958E-18
2 3 0.009 0.063 2.34015E-18 1.41539E-17
3 3 0.00135 0.03591 7.24963E-18  2.51453E-17
32 2 7.39756E-18 4.33111E-17  0.018 0.018

e 33 2 2 04983E-18 7.07773E-18 0.1 0.1




+ Eisner Spreadheet

p(...|C) p(...|H) p(...|START)
p(1]...) 0.7 0.1
p(2]...) 0.2 0.2

PEl..) |
p(Cl...)
p(HI...)

1.17798E-18

7.94958E-18

2 3 2.34015E-18 1.41539E-17
3 3 0.00135 0.03591 7.24963E-18  2.51453E-17
32 2 7.39756E-18 4.33111E-17 0.018 0.018

e 2 2 04983E-18 7.07773E-18 0.1 0.1



=C$14*E59*INDEX(C$11:C$13,$B59,1)+C$15*F59*INDEX(D$11:D$13,$B59,1)
+ Eisner Spreadheet

o(...|C) o(...|H) o(...|START)
p(1]...) 0.7 0.1

p(2l...) 0.2

P@A...) 0.1 \ 0.7

0(C|...) 0.1 0.5

o(H|...) 0.1 0.8 0.5
o(STOP]...) 0.1 \ 0

Day |lIce a(C) B(C)
Creams

1 2 0.1 1.17798E-18  7.94958E-18
2 3 0.009 4015g-18  1.41539E-17
aWala N 035D 49GQ3E-18  2.51453E-17
p(C|C)*33B(C)"p(2|C) + p(H|C)" 33B(H) " p(2|H)
.3-2. | 2 . -7-.3.9756E-18 ;L.ESélllE-l (.)..0-18
The 33 2 2.049-18 (0.1) (0.1)



+ Working through Eisner

All th th
mlrézzhpecz:ths throqu? aH ° J Total prob Prob of getting to C/H at
up to time t up to time t of the data time t given all the data

a(C)*B(C  |a(H)*B (H) |a(C)*B (C)

+a(H)*B(H)
1.17798E-1 7.94958E-19
2.106135-20&95&19

9.78701E-21 9.02969E-19

SUM:

p(7C,1)

3 0 0 0.023 0 0 0.977

3 0 0 0.011 0 0 0.989

Th SUM 9.931 3.212 1.537 1.069 7.788 9.463



+ Working through Eisner

p(...|C) p(...|H) p(...| START)
p(LIC) p(L/H) -
p(1]..)}  |0.454817043] 01213604 0
0.129 0.871 L=
0.023 0.977 p(2]...) 0.324447849(0.342217822 0
0.011 0.989
p(3]...) 0.220755108|0.445646139 0

SUM of Prob of going thru C when IC = 1

¢ SUM of Prob of going thru C given all the data

2 0 0.129 0.871
3 0 0 0.023 0 0 0.977
3 0 0 0.011 0 0 0.989

3.212 1.537 1.069 7.788 9.463



+ Eisner results

m Start p(.-.[C) p(...|H)
p(1]...) 0.7 0.1
p(2]...) 0.2 0.2
p(3|...) 0.1 0.7

m After 1 iteration

p(...|C) p(...|H)
p(1]...) 0.6643 0.0592
p(2]...) 0.2169 0.4297
p(3]...) 0.1187 0.5110

m After 10 iterations

p(...|C) p(...|H)
p(1]...) 0.6407 0.0001
p(2]...) 0.1481 0.5342
p(3]...) 0.2112 0.4657

Thanks to Dan Jurafsky for these slides



+ Back to Embedded Training
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How do we represent the likelihood of a
feature vector being in a particular state?
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