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+ ASR components

n Feature Extraction, MFCCs, start of Acoustic 

n HMMs, the Forward and Viterbi algorithms

n Baum-Welch (Forward-Backward)

n Acoustic Modeling and GMMs

n N-grams and Language Modeling

n Search and Advanced Decoding

n Dealing with Variation



+ Speech Recognition Architecture

Thanks to Dan Jurafsky for these slides 
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+ “Prior” probability of word sequence

n The language model captures the knowledge we 
have about what words to expect based on the 
context
n “Grammar” creates a finite state model of all (and only) 

possible sequences of words.  
n “Statistical Language Model” (SLM) encodes the probability 

of sequences of words based on counts from data.

n The context is both the domain and the immediate 
previous context
n Domain:  Language modeling data should match the target 

recognition data
n Immediate context:  Previous “n” words (usually 3-4)



+ Language Modeling
n We want to compute 

n P(w1,w2,w3,w4,w5…wn) = P(W)
n = the probability of a sequence

n Alternatively we want to compute 
n P(w5|w1,w2,w3,w4)
n =the probability of a word given some previous words

n The model that computes 
n P(W) or
n P(wn|w1,w2…wn-1)

n We can model the word prediction task as the ability to 
assess the conditional probability of a word given the 
previous words in the sequence 
n P(wn|w1,w2…wn-1)
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+ Conditional Probability

n Given an experiment, a corresponding sample space 
S, and a probability law 

n Suppose we know that the outcome is within some 
given event B 

n We want to quantify the likelihood that the outcome 
also belongs to some other given event A. 

n We need a new probability law that gives us the 
conditional probability of A given B P(A|B) 



+ Conditional Probability
n Let A and B be events 

n p(B|A) = the probability of event B occurring given event A occurs 

n Definition: p(B|A) =  p(A ∩ B) / p(A)

n So for LM:
n P(wn|w1,w2…wn-1)
n =  P(w1,w2…wn ) / P(w1,w2…wn-1)

n As in
n P(the | its water is so transparent that)

P(its water is so transparent that the)
P(its water is so transparent that)

A B

S



+ Very Easy Estimate
nHow to estimate?

n P(the | its water is so transparent that) =

n According to Google those counts are 5/9 
n Unfortunately... 2 of those were to these slides... So maybe it’s 

really 3/7
n In any case, that’s not terribly convincing due to the small 

numbers involved.
n (actually, it’s 95,800 / 103,000 or .95)
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+ Language Modeling

n Unfortunately, for most sequences and for most text 
collections we won’t get good estimates from this 
method.
n What we’re likely to get is 0. Or worse 0/0.

n Clearly, we’ll have to be a little more clever.
n Let’s use the chain rule of probability
n And a particularly useful independence assumption.
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+ The Chain Rule
n Recall the definition of conditional probabilities

n For sequences...
n P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

n In general 
n P(x1,x2,x3,…xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1…xn-1)

P(its water was so transparent)=

P(its)*

P(water|its)*

P(was|its water)*

P(so|its water was)*

P(transparent|its water was so)
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+ Need the Independence Assumption

n There are still a lot of possible sentences
n In general, we’ll never be able to get enough data to compute the 

statistics for those longer prefixes
n Same problem we had for the strings themselves

n Make the simplifying assumption
n P(the | its water is so transparent that) = 

P(the | that)

n That is, the probability in question is independent of its 
earlier history.
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+Estimating Bigram Probabilities

n Markov Assumption
n So for each component in the product replace with the 

approximation (assuming a prefix of N)

n Bigram version

n The Maximum Likelihood Estimate (MLE)
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context



+ Maximum Likelihood Estimates
n The maximum likelihood estimate of some parameter of a 

model M from a training set T
n Is the estimate that maximizes the likelihood of the training set T 

given the model M

n Suppose the word Chinese occurs 400 times in a corpus 
of a million words (Brown corpus)

n What is the probability that a random word from some 
other text from the same distribution will be “Chinese”

n MLE estimate is 400/1000000 = .004
n This may be a bad estimate for some other corpus

n But it is the estimate that makes it most likely that 
“Chinese” will occur 400 times in a million word corpus.
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+Berkeley Restaurant Project
n Data collected to create a language model for asking 

questions about restaurants near Berkeley
Can you tell me about any good cantonese restaurants close by

Mid priced thai food is what i’m looking for

Tell me about chez panisse

Can you give me a listing of the kinds of food that are available

I’m looking for a good place to eat breakfast

When is caffe venezia open during the day
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+ Bigram Counts

n Out of 9222 sentences
n Eg. “I want” occurred 827 times
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+ Bigram Probabilities

n Divide bigram counts by prefix unigram counts to get 
probabilities.
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+ Kinds of Knowledge

n P(english|want)  = .0011

n P(chinese|want) =  .0065

n P(to|want) = .66

n P(eat | to) = .28

n P(food | to) = 0

n P(want | spend) = 0

n P (i | <s>) = .25
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§ As crude as they are, N-gram probabilities 
capture a range of interesting facts about 
language.

World knowledge

Syntax

Discourse



+ What to count?

n Each word?

n Ums and Uhs?

n Partial words?

n “polywords”? Classes of words?

n What about languages 
n With lots of inflections? (like Russian)
n With no word boundaries (like Chinese)
n With lots of compounding (like German)



+ Example from Switchboard
n A.1: Uh, do you have a pet Randy? 

n B.2: Uh, yeah, currently we have a poodle. 

n A.3: A poodle, miniature or, uh, full size? 

n B.4: Yeah, uh, it's, uh miniature. 

n A.5: Uh-huh. 

n B.6: Yeah. 

n A.7: I read somewhere that, the poodles is one of the, the most intelligent dogs, uh, 
around. 

n B.8: Well, um, I wouldn't, uh, I definitely wouldn't dispute that, it, it's actually my 
wife's dog, uh, I, I became part owner six months ago when we got married, but, uh, 
it, uh, definitely responds to, uh, to authority and, I've had dogs in the past and, uh, it 
seems, it seems to, uh, respond real well, it, it - she's, she's picked up a lot of things, 
uh, just, just by, uh, teaching by force, I guess is what I'd like to say. 

n A.9: Oh, uh-huh. So, you, you've only known the dog, wh-, how long did you say. 



+
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n Assigning probabilities to sentences is all well and 
good, but it’s not terribly illuminating . A more 
interesting task is to turn the model around and use 
it to generate random sentences that are like the 
sentences from which the model was derived.

n Generally attributed to 

Claude Shannon.



+ Generating Shakespeare
n Unigrams

n To him swallowed confess hear both.  Which.  Of save on trial for are ay device and 
rote life have c

n Hill he late speaks; or! A more or legless first you enter

n Bigrams 
n What means, sir. I confess she?  Then all sorts, he is trim, captain.
n Why doest stand forth they canopy, forsooth he is this palpable hit the King Henry. 

Live king. Follow.

n Trigrams
n Sweet prince, Falstaff shall die.  Harry of  Monmouths grave
n This shall forbid it should be branded, if renown made it empty

n Quadrigrams
n King Henry.  What! I will go seek the traitor Gloucester.  Exeunt some of the watch.  A 

great banquet serv’d in;
n Will you not tell me who I am? 
n It cannot be but so.
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+ Unknown Words
n But once we start looking at test data, we’ll run into words 

that we haven’t seen before (pretty much regardless of how 
much training data you have.)

n With an Open Vocabulary task
n Create an unknown word token <UNK>
n Training of <UNK> probabilities

n Create a fixed lexicon L, of size V
n From a dictionary or 
n A subset of terms from the training set

n At text normalization phase, any training word not in L changed to  <UNK>
n Now we count that like a normal word

n At test time
n Use UNK counts for any word not in training
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+ What to do about Zero Counts

nBack to Shakespeare
n Recall that Shakespeare produced 300,000 bigram 

types out of V2= 844 million possible bigrams...
n So, 99.96% of the possible bigrams were never 

seen (have zero entries in the table)
n Does that mean that any sentence that contains 

one of those bigrams should have a probability of 
0?
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+ Zipf’s Law

n Given the frequency f of a word and its rank r in the 
list of words ordered: by their frequencies:



+ Sparse Data Problem
n MLE is in general unsuitable for statistical inference 

in NLP because small parameters are hard to 
estimate.

n The problem is the sparseness of our data (even 
with the large corpus). 

n The vast majority of words are very uncommon 
n longer n-grams involving them are thus much rarer

n The MLE assigns a zero probability to unseen 
events 

n Bad …because the probability of the whole sequences will 
be zero
n computed by multiplying the probabilities of subparts



+ Solution
n How do you handle unseen n-grams?

n Smoothing 
n Use some of the probability mass to cover unseen events

n Backoff
n Use counts from a smaller context

n Interpolation
n Combine multiple sources of information appropriately weighted

n Try to differentiate cases 
n Some of those zeros are really zeros... 

n Things that really can’t or shouldn’t happen.

n Some of them are just rare events. 

n If the training corpus had been a little bigger they would have 
had a count (probably a count of 1!).



+ The intuition of smoothing (from Dan Klein)

n When we have sparse statistics:

n Steal probability mass to generalize better

P(w | denied the)
3 allegations
2 reports
1 claims
1 request
7 total

P(w | denied the)
2.5 allegations
1.5 reports
0.5 claims
0.5 request
2 other
7 total
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+ Laplace Smoothing
n Also called add-one smoothing

n Just add one to all the counts!

n Very simple

n MLE estimate:

n Laplace estimate:

n Reconstructed counts:
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ci:  Counts for word I
N:  Number of words
V:  Size of the vocabulary



+ Additive vs. Discounting approaches

n Problem: LaPlace is additive:  adds 1 to everything
n Gives too much probability mass to unseen n-grams
n For sparse sets of data over large vocabularies, such as n-

grams, Laplace's law actually gives far too much of the 
probability space to unseen events.

n Can we smooth more usefully?

n Discounting (absolute discounting)
n Subtracts ε from everything
n Distributes ε across the unseen events



+ Better Smoothing

n Intuition used by many smoothing algorithms
n Good-Turing
n Kneser-Ney
n Witten-Bell

n Is to use the count of things we’ve seen once to help 
estimate the count of things we’ve never seen
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+ Backoff and Interpolation
n Smaller context can be a useful source of knowledge

n If we are estimating:
n trigram p(z|x,y) 
n but count(xyz) is zero

n Use info from:
n Bigram p(z|y)

n Or even:
n Unigram p(z)

n How to combine this trigram, bigram, unigram info in 
a valid fashion?
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+ Backoff Vs. Interpolation

n Backoff: use trigram if you have it, otherwise 
bigram, otherwise unigram

n Interpolation: mix all three (or other sources of 
knowledge)
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+ Katz Backoff N-gram model 

n If we’ve seen the n-gram, use it
n But “discount it” by a normalizing factor
n Have to account for “borrowing” for other unseen n-grams

n Otherwise:  Recursively back off the the (N-1)-gram 
until there are some counts

Thanks to Dan Jurafsky for these slides 



+ Interpolation

n Simple interpolation

n Lambdas conditional on context:
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+ Smoothing: Kneser-Ney
P(Francisco | eggplant) vs P(stew | eggplant)

n “Francisco” is common, so backoff, interpolated methods say 
it is likely

n But it only occurs in context of “San”

n “Stew” is common, and in many contexts

n Weight backoff by number of contexts word occurs in
n C = number of different Contexts
n D = absolute discount (see textbook)

35

PIKN(wi |wi−1) =
C(wi−1wi )−D

C(wi−1)
+β(wi )

| {wi−1 :C(wi−1wi )> 0} |
wi∑ | {wi−1 :C(wi−1wi )> 0} |



+ Evaluating N-Gram Models

n Best evaluation for a language model
n Put model A into an application

n For example, a speech recognizer
n Evaluate the performance of the application with model A
n Put model B into the application and evaluate
n Compare performance of the application with the two models
n Extrinsic evaluation
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+ Difficulty of extrinsic (in-vivo) evaluation 
of  N-gram models
n Extrinsic evaluation

n This is really time-consuming
n Can take days to run an experiment

n So
n As a temporary solution, in order to run experiments
n To evaluate N-grams we often use an intrinsic evaluation, an 

approximation called perplexity
n But perplexity is a poor approximation unless the test data 

looks just like the training data
n So is generally only useful in pilot experiments (generally is 

not sufficient to publish)

n But is helpful to think about.
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+ Evaluation
n Standard method

n Train parameters of our model on a training set.
n Look at the models performance on some new data

n This is exactly what happens in the real world; we want to know how our 
model performs on data we haven’t seen

n So use a test set. A dataset which is different than our training set, 
but is drawn from the same source

n Then we need an evaluation metric to tell us how well our model is 
doing on the test set.

n One such metric is  perplexity
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+ Intuition of Perplexity
n The Shannon Game:

n How well can we predict the next word?

n Unigrams are terrible at this game.  (Why?)

n A better model of a text
n is one which assigns a higher probability to the word that actually 

occurs

n Ask a speech recognizer to recognize digits: “0, 1, 2, 3, 4, 
5, 6, 7, 8, 9” – easy – perplexity 10

n Perplexity is weighted equivalent branching factor.

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100



+ Example:  Linguistic Segmentation

n Acoustic segmentation
n I'm not sure how many active volcanoes there are now and and 

what the amount of material that they do 
n uh put into the atmosphere 
n I think probably the greatest cause is uh 
n vehicles 
n especially around cities

n Linguistic segmentation
n I'm not sure how many active volcanoes there are now and and 

what the amount of material that they do uh put into the 
atmosphere 

n I think probably the greatest cause is uh vehicles especially 
around cities 



+ Compare perplexity

n Build three models

Test Training
Acoustic Seg Ling Seg No Seg

Acoustic Seg 105 111
Ling Seg 89 78
No Seg 163 174 130



+ Small enough

n Real language models are often huge

n 5-gram models typically larger than the training data

n Use count-cutoffs (eliminate parameters with fewer 
counts) or, better

n Use Stolcke pruning – finds counts that contribute least 
to perplexity reduction, 
n P(City | New York) » P(City | York)
n P(Friday | God it’s) ¹ P(Friday | it’s)

n Remember, Kneser-Ney helped most when lots of 1 
counts
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+ N-gram versus smoothing algorithm 43

n-gram Katz Kneser-Ney 
2 134 132 
3 80 74 
4 75 65 
5 78 62 

 

 



+ Overview (from Microsoft Tutorial)
nCaching
nSkipping
nClustering
nSentence-mixture models
nStructured language models
nTools
nMore on the author, Josh Goodman

http://research.microsoft.com/en-
us/um/people/joshuago/icmldescription.htm
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+ Sentence Mixture Models

n Lots of different sentence types:
n Numbers (The Dow rose one hundred seventy three points)
n Quotations (Officials said “quote we deny all wrong doing ”quote)
n Mergers (AOL and Time Warner, in an attempt to control the media 

and the internet, will merge)

n Model each sentence type separately
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+ Sentence Mixture Models

n Roll a die to pick sentence type, sk

with probability lk

n Probability of sentence, given sk

n Probability of sentence across types:
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+ Sentence Mixture Results

Sentence mixture models (10,000,000 training)

108
110
112
114
116
118
120
122
124
126

0 1 2 3 4 5 6 7
Log-2 Number Mixtures

Pe
rp

le
xi

ty

Sentence mixture
Baseline

13% 
reduction
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+ Topic Examples - 0
(Mergers and acquisitions)
n JOHN BLAIR & COMPANY IS CLOSE TO AN AGREEMENT TO SELL ITS T. V. 

STATION ADVERTISING REPRESENTATION OPERATION AND PROGRAM 
PRODUCTION UNIT TO AN INVESTOR GROUP LED BY JAMES H. ROSENFIELD 
,COMMA A FORMER C. B. S. INCORPORATED EXECUTIVE ,COMMA INDUSTRY 
SOURCES SAID .PERIOD 

n INDUSTRY SOURCES PUT THE VALUE OF THE PROPOSED ACQUISITION AT 
MORE THAN ONE HUNDRED MILLION DOLLARS .PERIOD 

n JOHN BLAIR WAS ACQUIRED LAST YEAR BY RELIANCE CAPITAL GROUP 
INCORPORATED ,COMMA WHICH HAS BEEN DIVESTING ITSELF OF JOHN 
BLAIR'S MAJOR ASSETS .PERIOD 

n JOHN BLAIR REPRESENTS ABOUT ONE HUNDRED THIRTY LOCAL TELEVISION 
STATIONS IN THE PLACEMENT OF NATIONAL AND OTHER ADVERTISING 
.PERIOD 

n MR. ROSENFIELD STEPPED DOWN AS A SENIOR EXECUTIVE VICE PRESIDENT 
OF C. B. S. BROADCASTING IN DECEMBER NINETEEN EIGHTY FIVE UNDER A 
C. B. S. EARLY RETIREMENT PROGRAM .PERIOD 
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+ Topic Examples - 2
(Numbers) 

n SOUTH KOREA POSTED A SURPLUS ON ITS CURRENT ACCOUNT 
OF FOUR HUNDRED NINETEEN MILLION DOLLARS IN FEBRUARY 
,COMMA IN CONTRAST TO A DEFICIT OF ONE HUNDRED TWELVE 
MILLION DOLLARS A YEAR EARLIER ,COMMA THE GOVERNMENT 
SAID .PERIOD 

n THE CURRENT ACCOUNT COMPRISES TRADE IN GOODS AND 
SERVICES AND SOME UNILATERAL TRANSFERS .PERIOD 

n COMMERCIAL -HYPHEN VEHICLE SALES IN ITALY ROSE ELEVEN 
.POINT FOUR %PERCENT IN FEBRUARY FROM A YEAR EARLIER 
,COMMA TO EIGHT THOUSAND ,COMMA EIGHT HUNDRED FORTY 
EIGHT UNITS ,COMMA ACCORDING TO PROVISIONAL FIGURES 
FROM THE ITALIAN ASSOCIATION OF AUTO MAKERS .PERIOD 

n INDUSTRIAL PRODUCTION IN ITALY DECLINED THREE .POINT 
FOUR %PERCENT IN JANUARY FROM A YEAR EARLIER ,COMMA 
THE GOVERNMENT SAID .PERIOD 
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+ Topic Examples – 3
(quotations)

n NEITHER MR. ROSENFIELD NOR OFFICIALS OF JOHN BLAIR COULD BE 
REACHED FOR COMMENT .PERIOD 

n THE AGENCY SAID THERE IS "DOUBLE-QUOTE SOME INDICATION OF AN 
UPTURN "DOUBLE-QUOTE IN THE RECENT IRREGULAR PATTERN OF 
SHIPMENTS ,COMMA FOLLOWING THE GENERALLY DOWNWARD TREND 
RECORDED DURING THE FIRST HALF OF NINETEEN EIGHTY SIX .PERIOD 

n THE COMPANY SAID IT ISN'T AWARE OF ANY TAKEOVER INTEREST .PERIOD 

n THE SALE INCLUDES THE RIGHTS TO GERMAINE MONTEIL IN NORTH AND 
SOUTH AMERICA AND IN THE FAR EAST ,COMMA AS WELL AS THE 
WORLDWIDE RIGHTS TO THE DIANE VON FURSTENBERG COSMETICS AND 
FRAGRANCE LINES AND U. S. DISTRIBUTION RIGHTS TO LANCASTER 
BEAUTY PRODUCTS .PERIOD 

n BUT THE COMPANY WOULDN'T ELABORATE .PERIOD 
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+ Reality: Text normalization

nWhat about “$3,100,000” à convert to “Three 
million one hundred thousand dollars”, etc.

nNeed to do this for dates, numbers, maybe 
abbreviations.

nSome text-normalization tools come with Wall 
Street Journal corpus, from LDC (Linguistic Data 
Consortium)

nNot much available

nWrite your own (use Perl!)

51



+ Lattices in Kaldi

n Representation of the alternative word-sequences that are 
"sufficiently likely" for a particular utterance
n The lattice should have a path for every word sequence within α of the best-

scoring one. 
n The scores and alignments in the lattice should be accurate. 
n The lattice should not contain duplicate paths with the same word sequence. 

n We begin with a Weighted Finite State Transducer
HCLG=min(det(H◦C◦L◦G)) 

n H:  HMM
n C:  Context dependent phonemes
n L:  Lexicon
n G:  Grammar
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+ WFSTs and Decoding

n An input utterance U is a set of feature vectors of length T
n U:  Utterance is a WFSA with T+1 states

n One arc for every combination time +state

n The search graph is defined as 
S ≡ U ◦ HCLG

n S has approximately T+1 times as many states as HCLG

n Decoding is finding best path through S
n In reality, searching through a subset of S that has been pruned
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ABSTRACT

We describe a lattice generation method that is exact, i.e. it satisfies
all the natural properties we would want from a lattice of alterna-
tive transcriptions of an utterance. This method does not introduce
substantial overhead above one-best decoding. Our method is most
directly applicable when using WFST decoders where the WFST is
“fully expanded”, i.e. where the arcs correspond to HMM transi-
tions. It outputs lattices that include HMM-state-level alignments as
well as word labels. The general idea is to create a state-level lattice
during decoding, and to do a special form of determinization that
retains only the best-scoring path for each word sequence. This spe-
cial determinization algorithm is a solution to the following problem:
Given a WFST A, compute a WFST B that, for each input-symbol-
sequence of A, contains just the lowest-cost path through A.

Index Terms— Speech Recognition, Lattice Generation

1. INTRODUCTION

In Section 2 we give a Weighted Finite State Transducer (WFST)
interpretation of the speech-recognition decoding problem, in order
to introduce notation for the rest of the paper. In Section 3 we define
the lattice generation problem, and in Section 4 we review previous
work. In Section 5 we give an overview of our method, and in Sec-
tion 6 we summarize some aspects of a determinization algorithm
that we use in our method. In Section 7 we give experimental re-
sults, and in Section 8 we conclude.

2. WFSTS AND THE DECODING PROBLEM

The graph creation process we use in our toolkit, Kaldi [1], is very
close to the standard recipe described in [2], where the Weighted
Finite State Transducer (WFST) decoding graph is

HCLG = min(det(H ◦ C ◦ L ◦ G)), (1)

Thanks to Honza Černocký, Renata Kohlová, and Tomáš Kašpárek for
their help relating to the Kaldi’11 workshop at BUT, and to Sanjeev Khudan-
pur for his help in preparing the paper. Researchers at BUT were partly sup-
ported by Technology Agency of the Czech Republic grant No. TA01011328,
Czech Ministry of Education project No. MSM0021630528, and Grant
Agency of the Czech Republic project No. 102/08/0707. Arnab Ghoshal
was supported by EC FP7 grant 213850 (SCALE), and by EPSRC grant
EP/I031022/1 (NST).
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Fig. 1. Acceptor U describing the acoustic scores of an utterance

where H , C, L and G represent the HMM structure, phonetic
context-dependency, lexicon and grammar respectively, and ◦ is
WFST composition (note: view HCLG as a single symbol). For
concreteness we will speak of “costs” rather than weights, where a
cost is a floating point number that typically represents a negated
log-probability. A WFST has a set of states with one distinguished
start state1; each state has a final-cost (or ∞ for non-final states);
and there is a set of arcs between the states, where each arc has an
input label, an output label, and a weight (just think of this as a cost
for now). In HCLG , the input labels are the identifiers of context-
dependent HMM states, and the output labels represent words. For
both the input and output labels, the special symbol ϵ may appear,
meaning “no label is present.”

Imagine we want to “decode” an utterance of T frames, i.e. we
want to find the most likely word sequence and its corresponding
state-level alignment. A WFST interpretation of the decoding prob-
lem is as follows. We construct an acceptor, or WFSA, as in Fig. 1
(an acceptor is represented as a WFST with identical input and out-
put symbols). It has T+1 states, with an arc for each combination
of (time, context-dependent HMM state). The costs on these arcs
correspond to negated and scaled acoustic log-likelihoods. Call this
acceptor U . Define

S ≡ U ◦ HCLG , (2)

which we call the search graph of the utterance. It has approximately
T+1 times more states than HCLG itself. The decoding problem is
equivalent to finding the best path through S. The input symbol se-
quence for this best path represents the state-level alignment, and the
output symbol sequence is the corresponding sentence. In practice
we do not do a full search of S, but use beam pruning. Let B be
the searched subset of S, containing a subset of the states and arcs
of S obtained by some heuristic pruning procedure. When we do
Viterbi decoding with beam-pruning, we are finding the best path

1This is the formulation that corresponds best with the toolkit we use.



+ Operations on lattices

n Pruning lattices
n Use a specified beam to remove states and arcs that are not on a path 

sufficiently close to the cost of the best path through the lattice.

n Computing the best path
n outputs the corresponding input-symbol sequence (alignment) and 

output-symbol sequence (transcription) of the best path

n Computing the N-best hypotheses
n Outputs a lattice with a new start state with (up to) n arcs, each starting 

a separate path that is within the top N scoring paths
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+ Language model rescoring

n Lattice weights are a combination of language model + 
transition probabilities + pronunciation/silence probabilities.

n First need to subtract the original LM probabilities then add 
the new LM probabilities
n lattice-lmrescore --lm-scale=-1.0 ark:in.lats G_old.fst ark:nolm.lats
n lattice-lmrescore --lm-scale=1.0 ark:nolm.lats G_new.fst ark:out.lats

n NOTE:  Lexicon has to be the same!
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