Pronunciation Modeling

Te Rutherford

Bottom Line

- Fixing pronunciation is much easier and cheaper than LM and AM.
- The improvement from the pronunciation model alone can be sizeable.

Overview of Speech Recognition

Audio to Feature Vector

- Chop up the audio
- Take Fourier Transform
 power of each frequency
- Featurize
 - MFCC, Cepstrum, PLP, etc.
 - Clip out the silence
 - Stacking (windowing)
 - use t-1 t-2 t-3 ... and t+1 t+2 t+3 as features

Frame to State

- Acoustic model
 - a classifier (e.g. Neural Network)
 - input : a feature vector
 - output : a triphone state
- What is a triphone state?
 - type 1 /t/ : {vowel} + /t/ + {vowel}
 - type $2 / t / : {nasal} + / t / + {vowel}$
- Use decision trees to cluster /t/ sounds from different environment.

Phone Lattice

	time 1	time 2	time 3	time 4	
type 1 t - beginning	0.2	0.11	0.001		
type 1 t - middle	0.1	0.23	0.001		
type 1 t - end	0.1	0.06	0.2		
type 2 t - beginning	0.05	0.02	0.2		
type 2 t - middle	0.05	0.05	0.005		
type 2 t - end	0.1	0.001	0.05		
type 1 k - beginning	0.03	0.06	0.12		
type 2 k - middle	0.02	0.02	0.42		
type 3 k – end	0.03	0.001	0.001		

. . .

Weighted Finite State Transducer

- Essentially a search graph
- In speech, FST composition is used to prune the search graph and score the results.

A o B:

B:

A:

HMM conversion

- Limiting what sequence of states is valid.
 - k1 k1 k3 k3 ao1 ao2 ao2 ao3 l1 l2 l3 l3 not okay
 - k1 k1 k2 k2 l1 l1 l2 l3 l3 not okay
 - k1 k2 k2 k2 k3 k3 ao1 ao2 ao3 ao3 l1 l1 l2 l3 okay
- Use FST composition to prune the phone lattice

State to Phoneme

- Converting context-dependent triphone state back into phoneme
 - type 1 /t/ : {vowel} + /t/ + {vowel} \rightarrow /t/
 - type 2 /t/ : {nasal} + /t/ + {vowel} \rightarrow /t/
- Use FST Composition operation to convert (transduce)

Phoneme to Word

- List of valid phoneme sequences
- Example pronunciation dictionary:
 - call : k ao l
 - dad : d ae d
 - mom : m aa m
- Backbone of the recognizer
 - the best phoneme sequence might not make a word…

Pronunciation FSTs

d ey t ax
 d ey dx ax
 d ae t ax
 d ae dx ax

Recognizing sequence of words

- Language model and grammar are a finite state transducers.
 - P(is | intuition)
 - P(is | data)

Search meets machine learning

- Compose a well-pruned search graph (HCLG)
 - HMM FSTs \rightarrow pruned phone graph
 - Context-independent FSTs \rightarrow phoneme graph
 - Lexicon FSTs→ word graph (heavily pruned phoneme graph)
 - Grammar and LM FSTs → pruned and scored word graph

Search meets machine learning

- Compose a well-pruned search graph (HCLG)
 - HMM FSTs \rightarrow pruned phone graph
 - Context-independent FSTs \rightarrow phoneme graph
 - Lexicon FSTs → word graph (heavily pruned phoneme graph)
 - Grammar and LM FSTs → pruned and scored word graph
- Classify a sequence of feature vector (by acoustic model) → phone lattice
- Compose the phone lattice with HCLG and search

Overview of Speech Recognition

Lexicon is the key component

- The lexicon makes training and decoding possible.
 - limiting the size of the search graph
- The lexicon determines the words that can possibly be recognized.

Motivations for Pronunciation Modeling

- Suppose you are making a speech recognizer for a new language.
- Base dictionary and specialized dictionary
 - How is a dictionary made?
 - Can we automate it? semi-automate it?

Motivations for Pronunciation Modeling

- Suppose you are making a speech recognizer for a new language.
- Base dictionary and specialized dictionary
 - How is a dictionary made?
 - Can we automate it? semi-automate it?
- The errors from pronunciation modeling can be isolated and fixed relatively easily.

Pronunciation can be hard...

- For a dictation task, we face new words all the time.
 - "Play a song by Ke\$ha"
 - "Install Spotify"
 - "Who sings Gangnam Style?"
 - "Tell me about Zoe Deschanel"

Ask linguists for help

- These new words are usually hard and might require several pronunciations
 - Gotye
 - Rihanna
 - Gangnam Style
 - Ellie Goulding

Ask linguists for help

- These new words are usually hard and might require several pronunciations
 - Gotye
 - Rihanna
 - Gangnam Style
 - Ellie Goulding
- Disadvantages
 - Expensive
 - "Too accurate"
 - Slow(er) turn-around time

Refresh the pronunciation dictionary

- Apply Grapheme-to-Phoneme conversion (G2P) to a list of new words
- Rule-based approach

Refresh the pronunciation dictionary

- Apply Grapheme-to-Phoneme conversion (G2P) to a list of new words
- Rule-based approach
- Statistical approach: Hidden Markov Model trained with Baum-Welch on the base dictionary
 - state : set of phonemes
 - observation : letters or groups of letters

Performance of statistical approach

- HMM-based models perform quite well.
- English, Dutch, German, and French which is the hardest?

Performance of statistical approach

- HMM-based models perform quite well.
- English, Dutch, German, and French which is the hardest?

Language	Data set	M-M+HMM
English	CMUDict	65.6 ± 0.72
English	Celex	83.6 ± 0.63
Dutch	Celex	91.4 ± 0.24
German	Celex	89.8 ± 0.59
French	Brulex	90.9 ± 0.45

Jiampojamarn et al, 2007

Semi-automatic approach

- Learn the pronunciation of a word from a native speaker but not a linguist.
- Why is this possible?

Pronunciation Learning from Crowd-sourcing

Rutherford et al., 2014

Learn automatically from human

- For each word or phrase (transcription),
 - get people to pronounce it
 - use the speech recognizer to extract the pronunciation
 - we already have the acoustic model + transcription!
- Fast : <1 day turn-around
- Cheap : ~5 cents/transcription
- Sounds great. But would it work?

Overview of the algorithm

Data Acquisition

- Picked top 1,000 downloaded entries from Google Play Store for each of the four categories
 - Artist names
 - Song titles
 - TV show names
 - Movie titles
- Made 4 data sets
- Send them to Amazon Mechanical Turk
 - 10 different Turkers pronounce the same transcription
 - 7 utterances for pronunciation learning
 - 3 utterances for testing

Pronunciation candidate generation

- Use Grapheme-to-Phoneme conversion to generate 20 pronunciations per word
- If a word is already in the dictionary, use that pronunciation too.

Extract pronunciation

• Force-aligned G2P: find the triphone state sequences that best align with the utterance

Pronunciation selection

- Evaluated 3 possibilities
 - Use all of the learned pronunciations
 - Use the pronunciations that occur more than once
 - Majority vote

Experiment results: Use all learned pronunciations

Conclusion so far

- Improved SACC across all datasets
- Highest impact on artist names

Question

- How should we select pronunciations?
- How many should we keep?

How many pronunciations should we use?

Question

- So far we tested on matching data only
 Why can't we test it on the standard test set?
- Would it help to use the new pronunciations in the real setting?

Beyond WER

- Use majority vote to select pronunciations to add the base pronunciation dictionary
- Test on the voice search task
 - MTurkers rate the quality of the voice search result.

Results – Voice Search

Testing out the pipeline

- Extract 14,000 Google Map typed search queries that occur rarely in the log.
- Pick 5,000 words that are not in the lexicon.
- Can we do better than fully automatic G2P?

Results – Voice Google Map Search

Question

• Where do the learned pronunciations come from with respect to G2P rankings?

- Our baseline system uses the top G2P candidate.

Distribution of G2P Ranks

Learned pronunciations from artist data

Artist name	Learned pronunciations	G2P Rank
Dan Omelio	AX M EH L IY OW	20
Туда	T AY G ER	20
Mat Kearney	K EH EH R N IY	20
Jadakiss	JH EY D AX K IH S	20
Nasri Atweh	N AA Z R IY	19
Sonny Uwaezuoke	Y UW W EY Z UW OW K	15
Flo Rida	R AY D AX	2
Amadeus Mozart	AX M AX D EY AX S	4
David Guetta	G W EH T AX	6

Limitations

- Word boundary
 - Call Me Fitz \rightarrow F IH T
 - Gwen Stefani G W EH N Z + S T EY F AX N IY
 - Need to enforce boundary constraints

Conclusion

- Crowdsourcing pronunciations proved a viable quick path to refresh the pronunciation dictionary.
- The forcealigned-G2P algorithm can be used to learn pronunciation from audio data.
- Pronunciation in English is hard because it's such an international language.