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Abstract—Spoken language understanding (SLU) aims at ex-
tracting meaning from natural language speech. Over the past
decade, a variety of practical goal-oriented spoken dialog sys-
tems have been built for limited domains. SLU in these systems
ranges from understanding predetermined phrases through fixed
grammars, extracting some predefined named entities, extracting
users’ intents for call classification, to combinations of users’
intents and named entities. In this paper, we present the SLU
system of VoiceTone® (a service provided by AT&T where AT&T
develops, deploys and hosts spoken dialog applications for en-
terprise customers). The SLU system includes extracting both
intents and the named entities from the users’ utterances. For
intent determination, we use statistical classifiers trained from
labeled data, and for named entity extraction we use rule-based
fixed grammars. The focus of our work is to exploit data and to
use machine learning techniques to create scalable SLU systems
which can be quickly deployed for new domains with minimal
human intervention. These objectives are achieved by 1) using the
predicate-argument representation of semantic content of an ut-
terance; 2) extending statistical classifiers to seamlessly integrate
hand crafted classification rules with the rules learned from data;
and 3) developing an active learning framework to minimize the
human labeling effort for quickly building the classifier models
and adapting them to changes. We present an evaluation of this
system using two deployed applications of VoiceTone®.

Index Terms—Named entities, semantic classification, semantic
representation.

I. INTRODUCTION

I N the last decade, a variety of practical goal-oriented spoken
language understanding (SLU) systems have been built for

limited domains. One characterization of these systems is the
way they allow humans to interact with them. On one extreme,
there are machine-initiative systems, commonly known as in-
teractive voice response (IVR) systems [1]. In IVR systems, the
interaction is controlled by the machine. Machine-initiative sys-
tems ask users specific questions and expect the users to input
one of predetermined keywords or phrases. For example, a mail
delivery system may prompt the user to say “schedule a pick up,
track a package, get a rate, or order supplies.” In such a system,
SLU is reduced to detecting one of the allowed keywords or
phrases in the users’ utterances.
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On the other extreme, there are user-initiative systems in
which users control the flow and a machine simply executes
the users’ commands. A compromise in any realistic appli-
cation is to develop a mixed-initiative system [2] where both
users and the system can assume control of the flow of the
dialog. Mixed-initiative systems provide users the flexibility
to ask questions and provide information in any sequence they
choose. Although such systems are known to be more complex,
they have proven to provide more natural human/machine
interaction. For example, in the DARPA initiated airline travel
information system (ATIS) project [3], which was designed to
provide flight information, users provide some flight attributes
like origination and destination cities, dates, etc. In a mixed-ini-
tiative dialog, a user may choose to provide such information
in several different ways. For example, a user may say “I want
to fly to Boston from New York next week” and another user
may express the same information by saying “I am looking
to fly from JFK to Boston in the coming week.” In spite of
this freedom of expression, utterances in such applications
have a clear structure that binds together the specific pieces
of information. In the case of ATIS, these specific pieces of
information, among others include Destination and Departure
Date. SLU in such systems is therefore reduced to the problem
of extracting this task specific information. Such crisp and un-
ambiguous pieces of information are called named entities [4].
Most ATIS systems employed either a data-driven statistical
approach (mostly from the speech processing community) such
as AT&T’s CHRONUS [5] and BBN’s hidden understanding
models [6] or a knowledge-based approach (mostly from the
computational linguistics community) such as the Massachu-
setts Institute of Technology’s TINA [7], CMU’s Phoenix [8],
and SRI’s Gemini [9].

Although most mixed initiative dialog systems are designed
to perform only one task, such as the ATIS systems, one can
imagine having more complex dialog applications that are con-
figured to understand and perform several tasks, such as can-
celing some service, resolving a billing discrepancy, adding a
new telephone line, etc. Each task may have different sets of
named entities that can be structured and spoken differently by
different users. The function of the SLU for such a system is
not only to extract the named entities but also to identify which
task the user is calling about. In this paper, such tasks will be
referred to as users’ intents. Examples of such systems include
the AT&T “How May I Help You?” (HMIHY ) [10], [11], the
Lucent call routing system [12] and the BBN call director [13].

HMIHY is a call routing system. The users are greeted by
the open-ended prompt “How May I Help You?,” encouraging
them to talk naturally. For intent determination, the HMIHY
depends heavily on the phrases in the input utterances, which are
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salient to certain intents or call-types. For example, in the manu-
ally transcribed input utterance “I would like to change oh about
long distance service to one charge nine cents a minute,” the
salient phrase “cents a minute” is strongly associated with the
call-type Calling_Plans. The salient phrases are automatically
acquired from a corpus of transcribed and labeled training data,
and are clustered into salient grammar fragments in the form of
finite state machines [14], [10]. In HMIHY , utterances are
classified into call-types by identifying the grammar fragments
present in the recognizer output, and then by applying a statis-
tical decision rule (Naïve Bayes-like) to combine their strengths
of associations with different call-types. In summary, the natural
language understanding in HMIHY is performed by a statis-
tical classifier using salient grammar fragments as features.

One of the main advantages of statistical classification
methods is their robustness to both variations in spoken
language and to recognition errors introduced by speech
recognition. Their disadvantage lies in the need to collect and
annotate large volumes of data for training the underlying
models. In HMIHY , the data was labeled with action ori-
ented call-types, i.e., each label is essentially the destination
where a call has to be routed. Such a system has at least two
drawbacks. First, changing business needs may require contin-
uous changes in routing destinations. This would in turn require
data to be relabeled and classification models to be retrained.
Second, since the routes are application specific, data labeled
for one application cannot be reused for another application.

In this paper, we present the SLU in VoiceTone®, a spoken di-
alog service offered by AT&T. As opposed to call routing only,
in VoiceTone® we are interested in servicing the call completely.
There are three important aspects of our system. First, our se-
mantic representation captures the intents of the speaker and not
the actions performed by the system. Therefore, even if the ac-
tions taken in an application change, no relabeling of data is
required. In addition, our representation promotes labeling con-
sistency by human labelers and allows reuse of data across ap-
plications. The second contribution of this work is with respect
to the classifier itself. Our classifier model does not completely
depend on the labeled data. It allows for seamless integration
of hand crafted classification rules with the rules learned from
data. This enables development of useful models even in the
early phases of an application when little or no data is available
for building robust classification models. Lastly, in this work we
also address the problems of scalability and adaptability. State
of the art statistical classification systems are trained using a
large amount of labeled training data. Preparation of this data
is labor intensive and time consuming. Furthermore, practical
dialog systems are dynamic in nature. This means that the dis-
tribution of user intents and the language used to express them
change constantly over time. Therefore, a good classification
model at one point in time may not be as good at other times.
Our models must constantly adapt to such changes. A simple
but very expensive way to do this would be to periodically re-
build the model using only the most current data. Instead, in this
work we have employed an active learning framework to select
and label only those data items that improve the classifier per-
formance the most. This minimizes the human labeling effort
for building the models.

Fig. 1. AT&T SLU run-time system.

The organization of this paper is as follows. In Section II, we
provide an overview of VoiceTone®. In Section III, a descrip-
tion of our representation language is provided. In Section IV,
the process of labeling the training data using the active learning
framework is described. In Sections V–VII, we describe the
three main components of the SLU system, namely input nor-
malization, semantic classification, and named entity extraction.
To demonstrate the significance of our work, we provide experi-
mental results using two deployed applications of AT&T Voice-
Tone® spoken dialog services, in Section VIII.

II. SLU SYSTEM

In Fig. 1, we show a simplified block diagram of the AT&T
spoken dialog system. An automatic speech recognizer (ASR)
transcribes the speech signal into text and passes that to the SLU
unit. The SLU forms a semantic representation of the text and
passes it to the dialog manager (DM). The DM interprets the
semantic input within the context of the dialog, and responds
appropriately to the caller.

The lower section of Fig. 1 shows a block diagram of the SLU
system. There are three major processing steps. In the first step,
the input normalizer removes filled pauses from the transcribed
input. In the second step, named entities are extracted from the
normalized text. Finally, the input text is passed to a semantic
classifier that assigns it one or more semantic labels capturing
the users’ intent. These semantic labels together with the named
entities constitute the complete semantic description of the ut-
terance and are passed on to the DM.

Both entity extraction and semantic classification modules
are driven by semantic models. The process of building these
models is a major part of application development. It requires
detailed understanding of the task being automated. To under-
stand the types of intents callers have, and how they express
them, speech data is collected, transcribed and analyzed. Once
a set of intents and named entities needed for the application are
documented in a labeling guide, human labelers label the tran-
scribed speech data. This data is then used to train the classifi-
cation models. In the early phases of the application, there may
not be enough data to build good classification models for each
semantic label or named entity. However, one may have a good
understanding of how those intents and entities are expressed.
In our framework, this kind of human knowledge is expressed
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as rules, which are modified and/or adapted by the learning al-
gorithm, as and when more data become available.

It is important to note that in our architecture, the SLU does
not have any contextual information about the dialog. Instead,
it is the DM’s job to maintain a dialog context and interpret
the context independent SLU output within the context of the
dialog. Data collection and labeling is a major part of system
development cost. This architecture reduces it in a number of
ways. First, the labelers can label utterances to best represent the
intents within the utterance without using any external knowl-
edge. Besides gains in labelers’ productivity, this also results
in more consistently labeled data. Second, the changes in the
context dependent interpretation of callers’ intents can be im-
plemented without relabeling the data. Third, data labeled in a
context independent manner can more easily be reused across
applications. In this paper, we focus only on the SLU. Details
of the DM will not be discussed further in this paper, other than
to say that in VoiceTone® the DM represents the dialog context
in the form of attribute value pairs, and uses hand written rules
to carry out the interpretation task [15].

III. SLU REPRESENTATION LANGUAGE

Our interest here is in a representation that can capture
information sufficient to fulfill a callers’ request. Most of the
approaches for semantic annotation consider nested relations
among objects. For example, in the FrameNet project, relations
among frames [16] are described, without an underlying dialog
task in mind. In these kinds of semantic annotation schemes,
however, once the sentence is semantically parsed, it can be
used for various purposes, such as information extraction [17].
In contrast, our approach is driven by the need for a lightweight
representation that can be built bottom-up, reliably cover large
scale human-machine dialog corpora, and model noisy sponta-
neous spoken language. In this work, we take the challenge of
balancing the coverage of the SLU representation with stability
(agreement) of human judgment. In previous work, we have
instantiated the problem of SLU based on an input–output
association of utterance-actions [10]. More specifically, we
used an action oriented semantic representation language
that mapped one semantic label to each prompt and/or action
that could be taken by the system. The advantage of such an
approach is that it directly gives a computational model for
the input–output associations. The disadvantage is the lack
of built-in generalization of the model representation (spoken
input-action pairs). Should the prompts/actions taken by the
dialog system change over time, the semantic representation
must also be changed. In our current framework, we have
improved the generalization of the representation language
while maintaining its coverage. More specifically our choice
of the representation language was made to achieve robustness
toward: 1) the time-varying nature of spoken language; 2) the
time-varying nature of the external world (e.g., introduction of
new service); and 3) annotator disagreement, following a stable
labeling scheme across various corpora.

In our representation, utterances are labeled with the intent of
the speaker as opposed to the action that the system must take in
response. For example, in response to the following utterances,

the system would prompt the caller about the specific charges in
question. Therefore, in an action oriented semantic representa-
tion, both these utterances will be labeled as “Charge_on_bill.”

I see charges on my bill that I do not recognize
I want credit for some charges on my bill

Since intents in these utterances are different, their intent ori-
ented semantic representation will be different. To capture the
intent, we have used a predicate-argument representa-
tion. The predicates are domain independent verbs reflecting
the action the caller is trying to perform by the utterance (also
known as dialog acts [18]). The arguments constitute the do-
main specific objects, actions or concepts on which these ac-
tions are performed. Some examples of predicates are the
following.

• Request: user requesting for specific information.
• Report: user reporting specific information.
• Verify: user requesting to verify information.
• Explain: user requesting an explanation of information.
Examples of arguments from a transactional domain are

“Credit, Payment, Bill_Charge.” Having identified the domain
dependent objects and concepts, a list of semantic representa-
tion primitives can be generated by joining them with domain
independent predicates. For example, “Request(Credit),
Verify(Payment), Explain(Bill_Charge), Report(Payment).”
Some example utterances and their labels from this set are

I see charges on my bill that I do not understand Explain Bill Charge

I want credit for some charges on my bill Request Credit

I am just wanting to tell you that I have made the payment Report Payment

I am calling to check if you received my payment Verify Payment

I dialed a wrong number Report WrongNumber

Values of the arguments are sometimes specified by the user.
For example, in the utterance “I want credit for ten dollars,” a
“Request” for “Credit” is being made. The value of which is of
type “monetary amount” and the value of “monetary amount”
is $10. Objects like “monetary amount,” “dates,” “account
numbers,” and “phone numbers” are called named entities [4]
and are part of the semantic representation. Accordingly, the
semantic representation of the example given previously is:
“Request Credit monetary amount .”

In our representation the following should be noted. 1) Intent
(call-type) of an utterance is represented in the form of predi-
cate-argument, . 2) Separating domain dependent aspects
from domain independent aspects provides a systematic way of
creating the semantic representation for an application. 3) Once
labelers understand the semantics of predicates, they only need
to learn to spot the domain dependent object/concepts in the ut-
terances from different applications. 4) Since intents of the ut-
terance are captured, changes or extensions to an application
only require changes to the DM and do not require relabeling
the data. Furthermore, since in our labeling scheme intents con-
sistent across applications are captured, it is possible to reuse
the labeled data across applications. For example, data labeled
as “Request(Credit)” can be used for all applications where a
caller is likely to ask for credit. 5) An utterance may contain
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many intents. Therefore, multiple labels are allowed for each
utterance

We had sent the payment fifteen days back Report Payment Report Service Problem

still we cannot make long distance calls

Besides the advantages mentioned previously, our labeling
scheme also has other desirable properties. First, in contrast
to the action-oriented semantic representation, our scheme dis-
courages labelers from using any knowledge specific to the ap-
plication or the context of the utterance. Intuitively, this makes
labeling more consistent and more accurate semantic classifi-
cation models can be learned from a smaller amount of training
data. A second advantage of intent-oriented semantics is that the
classifiers (multiclass, multilabel) trained on such data have rel-
atively better compositional properties than those trained using
action oriented semantics. The compositional property allows
the assignment of multiple semantic labels to test utterances
even when such combinations of labels are not seen in training
data.

IV. DATA COLLECTION AND LABELING

In order to compile application specific semantic labels and
entities, application data is collected using the wizard-of-oz ap-
proach. The purpose of this collection is to gather representative
data on how users converse with a machine under some constant
application settings. It has been shown that the language char-
acteristics of the responses to machine prompts is significantly
different from those to humans [19], [20]. In a wizard-of-oz ap-
proach, a human, i.e., a wizard, acts on behalf of the system.
Callers to the system do not know about this and believe that
they are talking to a machine. To make this process cost effec-
tive, we implemented a “ghost wizard” approach that is a slight
variation of wizard-of-oz approach. Ghost wizard approach is
completely automatic. The goal of this approach is 1) to collect
users’ responses to opening prompts, and 2) to fine tune the set
of initial prompts for full system deployment. The ghost wizard
consists of an opening prompt like ”How may I help you?”
After recording callers’ response to such an opening prompt,
the callers are informed that their call is being routed to a rep-
resentative for further handling.

After some data is collected, user experience (UE) designers
analyze it to determine a list of semantic labels and named
entities needed for the application. Specifically, designers use
their knowledge about the application and look for the kinds
of requests callers are making. In this manner, high-frequency
requests are easily identified. To reliably identify low and
medium frequency requests, designers also employ an intent
clustering tool [21]. Based on this analysis, designers write an
annotation guide, documenting the semantic labels and named
entities needed for the application. Such a guide contains posi-
tive and negative examples of the different semantic labels and
named entities. The purpose of this guide is to help the labelers
throughout the process of labeling the data.

Once the semantic labels are designed for an application, the
next step is to manually label the data, i.e, assign one or more
predefined intent(s) (call type(s)) to each utterance and to mark
the named entities. Labeling is done using textual input, such as

Fig. 2. Active learning framework in the AT&T SLU system.

human or ASR transcriptions, instead of audio. There are three
main reasons for this: First, reading is much faster than listening.
Second, human transcriptions can also be used to improve ASR
models. Third, it is much faster to relabel the transcribed data
if needed, for example, due to a change in the semantic labels.
We typically use ASR transcriptions if they are recognized with
high confidence, otherwise, we revert to manual transcription
and labeling [22].

We use statistical methods for training the semantic classifica-
tion models. To build good models, a large amount of manually
labeled data is required. While it is possible to collect a large
amount of data, labeling it is an expensive task. Once initial
models are developed and deployed, they are constantly updated
to adapt to changes in the nature of callers’ requests. We employ
an active learning framework, shown in Fig. 2, to minimize the
human labeling effort for this purpose. The main components
of this framework are active and semisupervised learning and
labeling error correction.

This framework assumes that there is a constant stream of
incoming unlabeled data, which is buffered into a pool, .
To select the utterances to be labeled manually, we use active
learning, the purpose of which is to sample those examples that
improve the classifier performance the most. More specifically,
only those examples in the set , for which the confidence
values output by the current model are below a certain threshold
are selected [23]. The rest of the examples, for which the cur-
rent model outputs relatively higher confidence values, are used
in unsupervised manner, i.e., they are used with the labels as-
signed by the current model to train a new model [24]. Once a
new batch of examples are pooled, this cycle is repeated. The
corresponding algorithm for combining active and semisuper-
vised learning is shown in Fig. 3. Active learning has the dis-
tinct advantage of efficiently using annotated data and, thus,
reducing the human effort. Moreover, it has the intrinsic capa-
bility to adapt to nonstationary events by means of a feedback
mechanism in the training algorithm. New requests or signifi-
cant changes in call-type distributions are automatically identi-
fied and submitted for manual labeling.

Labeling is performed utterance by utterance to ensure it is
context independent. Although labelers follow an annotation
guide, this process tends to involve some subjective judgment
which can cause inconsistency in labeling. To avoid such in-
consistency, each label is verified by a different labeler. Clearly
more consistently labeled training data helps in the creation of
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Fig. 3. Algorithm for combining active and semisupervised learning. th is the
threshold used to select the utterances to label.

better classification models. However, verifying labeled data is
also labor intensive. As shown in Fig. 2, we adopt a labeling
error detection [25] method, inspired by active learning. Our
method identifies a small subset of the labeled data that is be-
lieved to be erroneous or inconsistent, and must be verified man-
ually. To do this we consider the confidence values in the call-
types obtained from the previously trained classifier. We use the
Kullback–Leibler (KL) divergence between the first pass of la-
beler assigned labels and the outputs of the classifier . More
formally, we compute

KL

where is the set of all call-types. is the probability of the
call-type obtained from the classifier. is the probability of the

call-type as assigned by the labelers in the first pass. Because
labelers either assign a call-type or they do not, the value of is
either 1 or 0. We then select only those utterances for relabeling
that have KL distance above a certain threshold.

V. INPUT NORMALIZATION

A semantic concept can be expressed by using a variety of
syntactic, lexical and morphological forms. These variations are
compounded by the different kinds of dysfluencies present in
the spoken language utterances. Some of these variations might
not directly contribute to the semantic content of the utterance.
Therefore, we remove them in the input normalization step, i.e.,
before we build the understanding models.

We apply a series of finite-state transductions that normalize
certain lexical and morphological variations. These transduc-
tions ( ) take the general form of mapping a word onto a
normalized form . More specifically , where
is a word from the vocabulary and is a normalized form
from the vocabulary , where is the empty symbol and

.
Intuitively, synonyms, morphological processing and stop

word transductions have the potential to increase the effective
size of the training corpus and decrease data sparseness, and
should therefore improve the SLU accuracy, particularly when
only a small amount of training data is available. However, as
described in Section VIII, our experiments with these transduc-
tions proved otherwise.

VI. SEMANTIC CLASSIFICATION

In general, semantic classification is the task of mapping rel-
evant information from the ASR, SLU, DM, and/or the applica-
tion into one or more semantic labels (or classes). In our context,

because of the architectural decisions explained in Section II, we
will only consider information from ASR and SLU. More for-
mally, given an instance of information , the problem is
to associate a set of semantic labels with where is
a finite set of semantic labels. Traditionally this task can be ac-
complished by a knowledge-based approach, i.e., by manually
writing an extensive set of rules [7], [26], [27]. In the absence of
any training data, these rules can become stochastic by setting a
guess estimate for each conditional probability, , that
instance belonging to semantic class .

Although rule-based methods have the advantage of requiring
no data, they suffer from lack of robustness, poor accuracy, and
inconsistency when designed by different individuals. Neverthe-
less, these methods have been widely used in spoken dialog sys-
tems such as airline reservation [28] and conference information
[29] systems. To achieve more natural human/computer interac-
tion, there has been increasing interest over the past decade in
data-driven methods for creating SLU systems [6], [10], [30],
[31]. Computing decision rules with learning algorithms has
been well studied in the machine learning literature [32]–[34]. It
provides the benefits of creating more robust and accurate sys-
tems. Unlike rule based systems, such data driven systems are
free from individual biases.

Given a collection of labeled examples
drawn from a distribution , where ,

the learning task becomes essentially of finding rules
that yield the lowest cost of the prediction error. This

is achieved by using a Bayes classifier [35]. Assuming no loss
for a correct prediction and a unit loss for any incorrect predic-
tion: . Since the distribution

is unknown, learning the classification rule is essentially
learning to estimate . This method of estimation differ-
entiates one classification algorithm from the other.

There are at least two types of classification methods [36]:
Generative methods, where is estimated based on as-
sumptions about the distribution . Such classifiers derive
optimal parameters of using Bayes rule. Examples in-
clude Naïve Bayes and hidden Markov models. Generative clas-
sifiers were adopted in the AT&T HMIHY spoken dialog
system [11].

Discriminative methods, where is directly com-
puted. For such classifiers, no assumptions about the distribu-
tion of are necessary. Only assumptions about the form
of the discriminant functions are necessary. Parameters of
the discriminant functions are computed by the minimization
of prediction error over training examples .

. Examples of discriminative classifiers are
AdaBoost [33] and support vector machines (SVMs) [34].

Because of their superior generalization performance, dis-
criminative classifiers have been successfully used in spoken di-
alog applications [37], [38]. We also use them in VoiceTone®.
In particular, we extended the Boosting algorithm to permit the
incorporation of prior knowledge (or rules) as a means to com-
pensate for a shortage of training data. Details of this algorithm
are given in [39]. Here, we briefly describe the main idea behind
our algorithm.

The basic idea of boosting is to build a highly accurate
classifier by combining many “weak” or “simple” base classi-
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fiers, each one of which may only be moderately accurate. The
collection of base classifiers is constructed in rounds. On each
round , the base learner is used to generate a base classifier

that minimizes an objective function. Besides the training
data, the boosting algorithm also provides the base learner a set
of nonnegative weights over the training examples. These
weights encode how important it is that correctly classify
each training example. Generally, the examples that were most
often misclassified by the preceding base classifiers will be
given the most weight so as to force the base learner to focus
on the “hardest” examples. In standard Adaboost, the objective
function is the negative log conditional likelihood of the data,

. Here is if ,
otherwise, it is , and is the classifier output for intent

and input . It is computed from the collection of base classi-
fiers: , and represents the strength of ’s
membership in class . Using a logistic function ,
can be converted into probabilities .

To accommodate the incorporation of prior knowledge, we
added a second term to the objective function. It is a measure
of relative entropy between the probabilities predicted by the
prior knowledge and those predicted by the data. The modified
objective function is as follows:

(1)
Here, is a parameter which is computed empirically to control
the relative importance of the two terms. is the estimate
(based on prior knowledge) of the conditional probability that
the instance belongs to class .

At run time, given an input , the classifier outputs
for each class . Using a suitable threshold on these

probabilities, classes for the input can be selected.

VII. NAMED ENTITY EXTRACTION

There has been a significant amount of research done on iden-
tifying the parts of input text that represent named entities and
extracting their values [4]. We have applied those techniques in
the context of SLU. For example, in the utterance “my phone
number is 5 5 5 1 2 3 4 area code 2 0 1,” the substring “5 5
5 1 2 3 4 area code 2 0 1” contains the named entity called
PHONE NO . In the first step, the input string is marked as

“my phone number is PHONE NO 5 5 5 1 2 3 4 area code 2 0
1 PHONE NO .” In the next step, the value of phone number
(201-555-1234) is extracted and the input string is further pro-
cessed to output “my phone number is PHONE NO .”

In addition to extracting information necessary for the DM to
fulfill the customer request, named entity extraction also helps
in normalizing the input. As shown in the previous example, the
replacement of a specific digit sequence representing a specific
phone number by the token PHONE NO normalizes the utter-
ance and effectively increases the size of the training set.

The set of named entities can be partitioned into two sets –
application-independent and application-dependent. Examples
of application-independent entities include “phone numbers,”
“dates,” “currency,” “credit/calling card numbers.” These are

Fig. 4. Sample fragment of a “date” grammar.

Fig. 5. FST representation of the “date” grammar fragment.

found in many different application. Besides application-inde-
pendent entities, an application may also need some entities spe-
cific to the application. For example names of products and ser-
vices. Such application-dependent entities are specified by a UE
designer in the annotation guide.

We employ a rule-based approach for named entity extrac-
tion. Currently, for each entity, a grammar in backus naur form
(BNF) is created manually. The creation of a new named entity
may involve reusing or extending one of the grammars avail-
able in the library of application-independent named entities, or
it may involve writing a new grammar from scratch.

As an example, a fragment of a “date” grammar is shown
in Fig. 4. Note that the terminals of the BNF are of the form

where , ,
which is the set of start and end symbols repre-

senting the entity types, and is the vocabulary.
These grammars are typically regular expressions written in

a grammar rule notation. They are compiled into finite-state ac-
ceptors whose arcs are labeled with the terminals of the gram-
mars. The two components of the arc labels are then interpreted
as the input and the output symbols leading to a finite-state trans-
ducer representation. The result of compilation of the previous
grammar fragment is shown in Fig. 5.

Each entity grammar is compiled into an FST and the
final entity extraction model is a transducer resulting from a
union of all the FSTs: .

For entity extraction, the utterance FSM ( ), possibly ob-
tained from ASR 1-best, word lattice or a word confusion net-
work, is composed with resulting in an FSM ( ) representing
the utterance with entities marked: . It is often the
case that the same substring might represent more than one en-
tity type. An example is a sequence of ten digits which could be
a phone number or an account number. It is important to note
that holds all possible parses for named entity in the input
FSM . To select the best parse we use longest match (path)
criterion. We encode this criterion using weights on the arcs in
the FST framework. Although, for the majority of named enti-
ties of interest, the grammars can specify the context in which
the BNF rules can apply, it is clear that this approach is limited
and is unable to deal with other ambiguities that cannot be re-
solved from a small set of immediate contexts.

The kinds of entities we are interested in can be extracted
using the procedure discussed previously. Writing accurate
grammars with high precision and high recall is a tedious
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and time consuming activity. Since it is easier for the DM to
detect missing named entities than to recover from a falsely
identified named entity (unless it confirms each value explic-
itly or implicitly as is done in many systems in the DARPA
Communicator [40]), in our framework, grammars with higher
precision are preferred over those with higher recall. If higher
recall is needed for an application, data-driven named entity
extraction [41] can be used.

VIII. EXPERIMENTS AND RESULTS

Using VoiceTone® services, AT&T has developed and de-
ployed many spoken dialog applications for its enterprise
customers. This is only possible because the SLU system
described in this paper is scalable. Development of HMIHY
took 12 mo, and another 6 mo thereafter to fine tune its
performance. Now the typical turn around time for such an
application is only 3 mo, and because of features like intent
oriented semantic representation, active learning combined
with labeling error detection, fine tuning and adaptation to
changing conditions can be done with significantly reduced
manual work. While it is hard to experimentally quantify the
impact of our semantic representation, it has been shown [24]
that the active learning framework can reduce the amount of
manually labeled data needed to achieve a given performance
by a factor of 2. It has also been shown [25] that the proposed
labeling error detection method captures 90% of the errors by
manually verifying only half of the data.

In the rest of this section, we will describe the metrics used
to evaluate our SLU system and present experimental results on
call classification and named entity extraction.

A. Evaluation Metrics

To evaluate the semantic classification performance, we used
essentially two metrics. The first one is the top class error rate
(TCER). It is the fraction of utterances in which the call-type
with maximum probability was not one of the true call-types.
The second metric, which is inspired by the information retrieval
(IR) community, is the -Measure ( -M)

Measure
recall precision

recall+precision

where recall is defined as the proportion of all the true call-types
that are correctly detected by the classifier. Precision is defined
as the proportion of all the detected call-types that are correct.

The -Measure changes with respect to the given confidence
threshold. For lower thresholds, the precision is lower but recall
is higher, and vice versa for higher thresholds. In order to se-
lect an operating point, we compute the -Measure for thresh-
olds between 0 and 1 and use the setting that gives the highest

-Measure. One difference between TCER and -Measure is
that the TCER only evaluates the top scoring call-type for an
utterance, whereas the -Measure evaluates all the call-types
exceeding the given threshold.

Fig. 6. Effect of different transductions on classifier performance.

B. Effect of Data Normalization

Fig. 6 shows the effect of different normalization transduc-
tions on the best -measure of the SLU trained on increasing
number of training examples. The -measure for each model
is computed on the same held out test data. The graph labeled
as “Normal” shows the performance when no transduction was
performed. Similarly, graphs labeled as “Morph,” “Stop,” and
“Synonyms” show the performance where the corresponding
transduction was applied on both training and test data. Al-
though there are some clear trends, the performance changes
are generally small.

For each word in the input, the synonym transducer replaced
it with its key synonym. Similarly, the morphological transducer
replaced a word with the stem, and the stop word transducer re-
moved all stop words. We used the stop word list that is tradi-
tionally used by the IR community [42]. This list mainly con-
tains articles, prepositions, pronouns, and conjunctions. Fig. 6
shows that irrespective of the amount of training data, stop word
removal actually deteriorates the performance. This is in con-
trast with what the IR community [43] has shown. The main
reason for this is that in IR the size of a document is an order
of magnitude larger than the spoken utterances, and stop words
do not carry meaningful information for text categorization. For
semantic understanding of spoken utterances, however, these
stop words carry a large amount of information. For example,
stop word removal will transform both of the following strings
to “mail check” and will lose the crucial semantic distinction
among them.

• I would like to know where to mail the check.
• I would like you to mail the check to me.
Intuitively when a small number of training examples are

available, both morphological and synonym transductions ef-
fectively increase the training data size and allow more reliable
estimation of model parameters. This should result in a better

-measure. On the other hand, when a large amount of training
data is available these transductions remove some of the dis-
criminating features, and therefore must affect the performance
adversely.
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TABLE I
DATA CHARACTERISTICS USED IN THE EXPERIMENTS FOR TWO

APPLICATIONS, T FROM TELECOMMUNICATIONS DOMAIN

AND T FROM PHARMACEUTICAL DOMAIN

Contrary to our intuition, Fig. 6 shows that synonym trans-
duction has no effect when the training data size is small.1 This
can be explained by a negligible number of synonym transduc-
tions that take place when the data size is small. However, syn-
onym transduction does have a detrimental effect on the perfor-
mance when a large amount of training data is available. This
result demonstrates that a general synonym transduction is not
at all useful. On the other hand, in our experience with applica-
tion development [37], we have noticed that a significant perfor-
mance improvement can be obtained by carefully selecting the
synonyms depending on the application domain.

The performance variation due to morphological transforma-
tion, also did not conform to our intuition. The performance is
un-affected when the training set is small and it improves when
the training set is large. This shows that different morpholog-
ical word forms do have some discriminating information and
transforming them to their root form marginally improves the
performance.

C. Call Classification Results

In order to evaluate the SLU, we carried out experiments
using human-machine dialogs collected from two different
VoiceTone® applications. Application is from telecommu-
nications domain and application is from pharmaceutical
domain.

Table I summarizes the amount of data used for training and
testing these two applications. It also provides the total number
of call-types, average utterance length, call-type perplexity, and
ASR word accuracy. Call-type perplexity is computed using the
prior distribution of the call-types in the training data and lan-
guage perplexity is the perplexity of the test set. ASR word ac-
curacy is obtained using an off-the-shelf acoustic model [44]
and a trigram language model trained with the corresponding
training data. Language perplexity is computed using the lan-
guage model.

Table II shows our results using both the output of the ASR
and the human transcriptions. As seen, there is a 6%–8% ab-
solute deterioration in the performance due to the recognition
errors.

1There are 80 semantic labels in the training data, and a corpus of 1000 ex-
amples is considered very small to represent all the syntactic forms for each of
the semantic labels.

TABLE II
TCER AND F -MEASURES (F -M) USING 2 DIFFERENT APPLICATIONS,

NAMELY, T AND T WITH ASR OUTPUT AND HUMAN

TRANSCRIPTIONS. ALL NUMBERS ARE IN PERCENTAGES

TABLE III
PRECISION AND RECALL FOR NAMED ENTITIES DETECTION

D. Named Entity Detection Results

In Table III, precision and recall for the named entities de-
tection in application are provided. As can be seen from the
table, precision for most entities is around 0.9. Only the named
entity “Type of Charge” had a very low precision. During the
development cycle, such named entities are dropped from con-
sideration, or their grammars are modified to achieve higher
precision.

IX. CONCLUSION

In this paper, we have described the AT&T SLU system. The
focus of our work has been to exploit data for creating adap-
tive and scalable systems. Specifically, we use machine learning
techniques to build statistical semantic classification models.
Statistical classifiers are robust to both variations in spoken lan-
guage and errors introduced by speech recognition. However,
their dependency on large volumes of data can pose serious
problems if that data is not available, and changing application
requirements can render the existing training data useless. We
discussed the semantic representation used by the SLU to cap-
ture the intents of the speaker and not the actions performed
by the system. Besides robustness to the time-varying nature
of spoken language and application requirements, our represen-
tation also promotes labeling consistency and therefore, better
classification models can be built. We described our extension to
the learning algorithm to seamlessly integrate hand crafted clas-
sification rules with the rules learned from data. This allows the
development of useful models even in the early phases of the
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application when little or no data is available for building ro-
bust classification models. We also described the data labeling
process. Specifically, we described how active learning com-
bined with labeling error detection methods could be used to
selectively sample the training data and reduce the data labeling
effort and at the same time produce better classification models.
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