
+
WFST: Weighted
Finite State
Transducer

CS136 Speech Recognition
January 24, 2020
Prof. Marie Meteer

+ FSAs: A recurring structure in speech 2

Phonetic HMM

Viterbi trellis

Pronunciation modeling
Language model

+ The language of sheep: /baa+!/ 3

n We can say the following things about this machine
n It has 5 states
n b, a, and ! are in its alphabet
n q0 is the start state
n q4 is an accept state
n It has 5 transitions

State Transition
Final state

+ FSM as an Input tape acceptor

Brandeis CS114 2013 Meteer

Reject

Accept

b a ! e
0 1
1 2
2 3
3 3 4
4

Transition Table

Given an input “tape”, does my machine accept or reject that input?+ Input tape acceptor

Brandeis CS114 2013 Meteer

Reject

Accept

b a ! e
0 1
1 2
2 2,3
3 4
4

+ Input tape acceptor

Brandeis CS114 2013 Meteer

Reject

Accept

b a ! e
0 1
1 2
2 2,3
3 4
4

Reject

+ Non-Determinism

Brandeis CS114 2013 Meteer

b a Stay in q2 or
go to q3?

Input: a

Both define /baa+/

b a ! e
0 1
1 2
2 2,3
3 4
4

+ Non-Determinism cont.
n Yet another technique

n Epsilon transitions
n Key point: these transitions do not examine or advance the

tape during recognition

Brandeis CS114 2013 Meteer

+ Equivalence
n Non-deterministic machines can be converted to

deterministic ones with a fairly simple construction
n That means that they have the same power:
n non-deterministic machines are not more powerful than deterministic

ones in terms of the languages they can accept

n Two basic approaches to ND recognition (used in all major
implementations of regular expressions)
n Either take a ND machine and convert it to a D machine and then do

recognition with that.
n Or explicitly manage the process of recognition as a state-space

search (leaving the machine as is).

Brandeis CS114 2013 Meteer

+ Non-Deterministic Recognition: Search
n In a ND FSA there exists at least one path through the machine for a

string that is in the language defined by the machine.

n But not all paths directed through the machine for an accept string
lead to an accept state.

n No paths through the machine lead to an accept state for a string not
in the language.

n Non-determinism doesn’t get us more formal power and it causes headaches so
why bother?
n More natural (understandable) solutions

Brandeis CS114 2013 Meteer

+ Example

Brandeis CS114 2013 Meteer

Fail Success

+

1/23/20Speech and Language Processing - Jurafsky and Martin

10Compositional Machines
n Formal languages are just sets of strings

n Therefore, we can talk about various set operations
(intersection, union, concatenation)

n This turns out to be a useful exercise

Concatenation
Union

+ Weighted finite state acceptors

n Like a normal FSA but with costs on the arcs and final-states
n Note: cost comes after “/”. For final-state, “2/1” means final-cost 1 on state 2.

n View WFSA as a function from a string to a cost.

n In this view, unweighted FSA is f : string → {0, ∞}.

n If multiple paths have the same string, take the one with the lowest
cost.

n This example maps ab to (3 = 1+1+1), all else to ∞.

11

Thanks for Mirko Hannemann for this slide

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Weighted finite state acceptors

0 1
a/1

2/1
b/1

! Like a normal FSA but with costs on the arcs and final-states

! Note: cost comes after “/”. For final-state, “2/1” means
final-cost 1 on state 2.

! View WFSA as a function from a string to a cost.

! In this view, unweighted FSA is f : string → {0,∞}.

! If multiple paths have the same string, take the one with the
lowest cost.

! This example maps ab to (3 = 1 + 1 + 1), all else to ∞.

Mirko Hannemann Weighted Finite State Transducers in ASR 11/46

+ Weights vs. costs

n Use “cost” to refer to the numeric value, and “weight”
when speaking abstractly, e.g.:
n The acceptor above accepts a with unit weight.
n It accepts a with zero cost.
n It accepts bc with cost 4=2+1+1
n State 1 is final with unit weight.
n The acceptor assigns zero weight to xyz.
n It assigns infinite cost to xyz .

12

Reminder: HMMs and ASR
Reminder: FSA, FST, WFST

Decoding with WFSTs

Weights vs. costs

0

1/0
a/0

2

b/2

3/1
c/1

! Personally I use “cost” to refer to the numeric value, and
“weight” when speaking abstractly, e.g.:

! The acceptor above accepts a with unit weight.
! It accepts a with zero cost.
! It accepts bc with cost 4 = 2 + 1 + 1
! State 1 is final with unit weight.
! The acceptor assigns zero weight to xyz.
! It assigns infinite cost to xyz.

Mirko Hannemann Weighted Finite State Transducers in ASR 13/46

Thanks for Mirko Hannemann for this slide

+ WSFAs in speechSpringer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

13

Language modeling

Pronunciation modeling

+ Operations: Union 14

Sum (Union) – Illustration

• Definition: [[T1 ⊕ T2]](x, y) = [[T1]](x, y)⊕ [[T2]](x, y)

• Example:

0

red/0.5

1 green/0.3 2 /0.8blue/0
yellow/0.6

0

1 /0green/0.4

2 /0.3

blue/1.2

0

red/0.5

1 green/0.3 2 /0.8blue/0
yellow/0.6

3 4 /0green/0.4

5 /0.3

blue/1.2

6

eps/0

eps/0

OpenFst Part I. Algorithms Rational Operations 9

Sum (Union) – Illustration

• Definition: [[T1 ⊕ T2]](x, y) = [[T1]](x, y)⊕ [[T2]](x, y)

• Example:

0

red/0.5

1 green/0.3 2 /0.8blue/0
yellow/0.6

0

1 /0green/0.4

2 /0.3

blue/1.2

0

red/0.5

1 green/0.3 2 /0.8blue/0
yellow/0.6

3 4 /0green/0.4

5 /0.3

blue/1.2

6

eps/0

eps/0

OpenFst Part I. Algorithms Rational Operations 9

+ Unary Operation: Concatenation 15

Product (Concatenation) – Illustration

• Definition: [[T1 ⊗ T2]](x, y) =
M

x=x1x2,y=y1y2

[[T1]](x1, y1)⊗ [[T2]](x2, y2)

• Example:

0

red/0.5

1 green/0.3 2 /0.8blue/0
yellow/0.6

0

1 /0green/0.4

2 /0.3

blue/1.2

0

red/0.5

1 green/0.3 2 blue/0
yellow/0.6

3 eps/0.8

4 /0green/0.4

5 /0.3

blue/1.2

OpenFst Part I. Algorithms Rational Operations 10

Product (Concatenation) – Illustration

• Definition: [[T1 ⊗ T2]](x, y) =
M

x=x1x2,y=y1y2

[[T1]](x1, y1)⊗ [[T2]](x2, y2)

• Example:

0

red/0.5

1 green/0.3 2 /0.8blue/0
yellow/0.6

0

1 /0green/0.4

2 /0.3

blue/1.2

0

red/0.5

1 green/0.3 2 blue/0
yellow/0.6

3 eps/0.8

4 /0green/0.4

5 /0.3

blue/1.2

OpenFst Part I. Algorithms Rational Operations 10

+ Unary Operation: Closure 16

Closure – Illustration

• Definition: [[T ∗]](x, y) =
∞M

n=0

[[T n]](x, y)

• Example:

0

1 /0green/0.4

2 /0.3

blue/1.2 0

1 /0
green/0.4

2 /0.3

blue/1.2

eps/0

eps/0.3

3 /0 eps/0

OpenFst Part I. Algorithms Rational Operations 11

+ Unary Operation: Reversal 17

Reversal – Illustration

• Definition: [[eT]](x, y) = [[T]](ex, ey)

• Example:

0

red/0.5

1 green/0.3 2 blue/0
yellow/0.6

3 /0green/1.2

4 /0.3

blue/2

0

4 eps/0

5
eps/0.3 3

green/1.2

blue/2 1 /0

red/0.5

2 green/0.3blue/0
yellow/0.6

OpenFst Part I. Algorithms Elementary Unary Operations 13

Reversal – Illustration

• Definition: [[eT]](x, y) = [[T]](ex, ey)

• Example:

0

red/0.5

1 green/0.3 2 blue/0
yellow/0.6

3 /0green/1.2

4 /0.3

blue/2

0

4 eps/0

5
eps/0.3 3

green/1.2

blue/2 1 /0

red/0.5

2 green/0.3blue/0
yellow/0.6

OpenFst Part I. Algorithms Elementary Unary Operations 13

+
Intersection – Illustration

• Definition: [[A1 ∩A2]](x) = [[A1]](x)⊗ [[A2]](x)

• Example:

0

red/0.5

1 green/0.3 2 /0.8blue/0
yellow/0.6

0 /0 1 red/0.2
blue/0.6

green/0.4

2 /0.5yellow/1.3

0 1 red/0.7 2 green/0.7

3 /0.8blue/0.6

4 /1.3

yellow/1.9

OpenFst Part I. Algorithms Fundamental Binary Operations 21

Binary operation: Intersection 18

+ Binary operation: difference 19

Difference – Illustration

• Definition: [[A1 − A2]](x) = [[A1 ∩A2]](x)

• Example:

0

red/0.5

1 green/0.3 2 /0.8blue/0
yellow/0.6 0 1 red

blue

green

2 yellow

0

1 red/0.5

3 green/0.3
2 red/0.5

4 /0.8blue/0
yellow/0.6

green/0.3

red/0.5

OpenFst Part I. Algorithms Fundamental Binary Operations 22

+ WFS Transducer
n Accept an input while producing an output

n Input phonemes: output words

20

Springer Handbook on Speech Processing and Speech Communication 5

0

1a:b/0.1

2
b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5 0 1b:c/0.3 2/0.7a:b/0.4

a:b/0.6

(a) (b)

(0, 0) (1, 1)a:c/0.4

(1, 2)c:b/0.7

(3, 2)/1.3
a:b/0.8

c:b/0.9

a:b/1

(c)

Figure 3: Example of transducer composition.

word transducer whose word strings are restricted
to the grammar. A variety of ASR transducer com-
bination techniques, both context-independent and
context-dependent, are conveniently and efficiently
implemented with composition.

As previously noted, a transducer represents a bi-
nary relation between strings. The composition of
two transducers represents their relational composi-
tion. In particular, the composition T = T1 ◦ T2 of
two transducers T1 and T2 has exactly one path map-
ping string u to string w for each pair of paths, the
first in T1 mapping u to some string v and the sec-
ond in T2 mapping v to w. The weight of a path in
T is computed from the weights of the two corre-
sponding paths in T1 and T2 with the same operation
that computes the weight of a path from the weights
of its transitions. If the transition weights represent
probabilities, that operation is the product. If instead
the weights represent log probabilities or negative log
probabilities as is common in ASR for numerical sta-
bility, the operation is the sum. More generally, the
weight operations for a weighted transducer can be
specified by a semiring [Salomaa and Soittola, 1978,
Berstel and Reutenauer, 1988, Kuich and Salomaa,
1986], as discussed in more detail in Section 3.

The weighted composition algorithm generalizes
the classical state-pair construction for finite au-
tomata intersection [Hopcroft and Ullman, 1979] to
weighted acceptors and transducers. The states of the
composition T are pairs of a T1 state and a T2 state. T
satisfies the following conditions: (1) its initial state
is the pair of the initial state of T1 and the initial state
of T2; (2) its final states are pairs of a final state of
T1 and a final state of T2, and (3) there is a transition
t from (q1, q2) to (r1, r2) for each pair of transitions
t1 from q1 to r1 and t2 from q2 to r2 such that the
output label of t1 matches the input label of t2. The
transition t takes its input label from t1, its output la-
bel from t2, and its weight is the combination of the
weights of t1 and t2 done with the same operation
that combines weights along a path. Since this com-
putation is local — it involves only the transitions
leaving two states being paired — it can be given
a lazy implementation in which the composition is
generated only as needed by other operations on the
composed automaton. Transitions with ϵ-labels in T1

or T2 must be treated specially as discussed in Sec-
tion 3. Figure 3 shows two simple transducers, Fig-
ure 3(a) and Figure 3(b), and the result of their com-
position, Figure 3(c). The weight of a path in the

input output weight

a:b/0.3

Springer Handbook on Speech Processing and Speech Communication 4

(a)

0 1
using:using/1

2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5

d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

Figure 2: Weighted finite-state transducer examples. These are similar to the weighted acceptors in Figure 1
except output labels are introduced on each transition. The input label i, the output label o, and weight w of
a transition are marked on the corresponding directed arc by i : o/w.

nal power series [Salomaa and Soittola, 1978, Bers-
tel and Reutenauer, 1988, Kuich and Salomaa, 1986].
Many of those operations are the weighted trans-
ducer generalizations of classical algorithms for un-
weighted acceptors. We have brought together those
and a variety of auxiliary operations in a comprehen-
sive weighted finite-state machine software library
(FsmLib) available for non-commercial use from the
AT&T Labs – ResearchWeb site [Mohri et al., 2000].

Basic union, concatenation, and Kleene closure
operations combine transducers in parallel, in series,
and with arbitrary repetition, respectively. Other op-
erations convert transducers to acceptors by project-
ing onto the input or output label set, find the best
or the n best paths in a weighted transducer, remove
unreachable states and transitions, and sort acyclic
automata topologically.

Where possible, we provided lazy (also called on-
demand) implementations of algorithms. Any finite-
state object fsm can be accessed with the three main
methods fsm.start(), fsm.final(state),
and fsm.transitions(state) that return the
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface can
be implemented for concrete automata in an obvious
way: the methods simply return the requested infor-
mation from a stored representation of the automa-

ton. However, the interface can also be given lazy
implementations. For example, the lazy union of two
automata returns a new lazy fsm object. When the
object is first constructed, the lazy implementation
just initializes internal book-keeping data. It is only
when the interface methods request the start state, the
final weights, or the transitions (and their destination
states) leaving a state, that this information is actually
computed, and optionally cached inside the object for
later reuse. This approach has the advantage that if
only a part of the result of an operation is needed (for
example in a pruned search), then the unused part is
never computed, saving time and space. We refer the
interested reader to the library documentation and an
overview of the library [Mohri et al., 2000] for fur-
ther details on lazy finite-state objects.

We now discuss the key transducer operations
that are used in our speech applications for model
combination, redundant path removal, and size re-
duction, respectively.

2.3. Composition

Composition is the transducer operation for com-
bining different levels of representation. For in-
stance, a pronunciation lexicon can be composed
with a word-level grammar to produce a phone-to-

+

1/23/20

21FST for morphology: Foxes and Cats

+ Composition 22

Springer Handbook on Speech Processing and Speech Communication 5

0

1a:b/0.1

2
b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5 0 1b:c/0.3 2/0.7a:b/0.4

a:b/0.6

(a) (b)

(0, 0) (1, 1)a:c/0.4

(1, 2)c:b/0.7

(3, 2)/1.3
a:b/0.8

c:b/0.9

a:b/1

(c)

Figure 3: Example of transducer composition.

word transducer whose word strings are restricted
to the grammar. A variety of ASR transducer com-
bination techniques, both context-independent and
context-dependent, are conveniently and efficiently
implemented with composition.

As previously noted, a transducer represents a bi-
nary relation between strings. The composition of
two transducers represents their relational composi-
tion. In particular, the composition T = T1 ◦ T2 of
two transducers T1 and T2 has exactly one path map-
ping string u to string w for each pair of paths, the
first in T1 mapping u to some string v and the sec-
ond in T2 mapping v to w. The weight of a path in
T is computed from the weights of the two corre-
sponding paths in T1 and T2 with the same operation
that computes the weight of a path from the weights
of its transitions. If the transition weights represent
probabilities, that operation is the product. If instead
the weights represent log probabilities or negative log
probabilities as is common in ASR for numerical sta-
bility, the operation is the sum. More generally, the
weight operations for a weighted transducer can be
specified by a semiring [Salomaa and Soittola, 1978,
Berstel and Reutenauer, 1988, Kuich and Salomaa,
1986], as discussed in more detail in Section 3.

The weighted composition algorithm generalizes
the classical state-pair construction for finite au-
tomata intersection [Hopcroft and Ullman, 1979] to
weighted acceptors and transducers. The states of the
composition T are pairs of a T1 state and a T2 state. T
satisfies the following conditions: (1) its initial state
is the pair of the initial state of T1 and the initial state
of T2; (2) its final states are pairs of a final state of
T1 and a final state of T2, and (3) there is a transition
t from (q1, q2) to (r1, r2) for each pair of transitions
t1 from q1 to r1 and t2 from q2 to r2 such that the
output label of t1 matches the input label of t2. The
transition t takes its input label from t1, its output la-
bel from t2, and its weight is the combination of the
weights of t1 and t2 done with the same operation
that combines weights along a path. Since this com-
putation is local — it involves only the transitions
leaving two states being paired — it can be given
a lazy implementation in which the composition is
generated only as needed by other operations on the
composed automaton. Transitions with ϵ-labels in T1

or T2 must be treated specially as discussed in Sec-
tion 3. Figure 3 shows two simple transducers, Fig-
ure 3(a) and Figure 3(b), and the result of their com-
position, Figure 3(c). The weight of a path in the

Springer Handbook on Speech Processing and Speech Communication 5

0

1a:b/0.1

2
b:a/0.2

c:a/0.3

3/0.6

a:a/0.4

b:b/0.5 0 1b:c/0.3 2/0.7a:b/0.4

a:b/0.6

(a) (b)

(0, 0) (1, 1)a:c/0.4

(1, 2)c:b/0.7

(3, 2)/1.3
a:b/0.8

c:b/0.9

a:b/1

(c)

Figure 3: Example of transducer composition.

word transducer whose word strings are restricted
to the grammar. A variety of ASR transducer com-
bination techniques, both context-independent and
context-dependent, are conveniently and efficiently
implemented with composition.

As previously noted, a transducer represents a bi-
nary relation between strings. The composition of
two transducers represents their relational composi-
tion. In particular, the composition T = T1 ◦ T2 of
two transducers T1 and T2 has exactly one path map-
ping string u to string w for each pair of paths, the
first in T1 mapping u to some string v and the sec-
ond in T2 mapping v to w. The weight of a path in
T is computed from the weights of the two corre-
sponding paths in T1 and T2 with the same operation
that computes the weight of a path from the weights
of its transitions. If the transition weights represent
probabilities, that operation is the product. If instead
the weights represent log probabilities or negative log
probabilities as is common in ASR for numerical sta-
bility, the operation is the sum. More generally, the
weight operations for a weighted transducer can be
specified by a semiring [Salomaa and Soittola, 1978,
Berstel and Reutenauer, 1988, Kuich and Salomaa,
1986], as discussed in more detail in Section 3.

The weighted composition algorithm generalizes
the classical state-pair construction for finite au-
tomata intersection [Hopcroft and Ullman, 1979] to
weighted acceptors and transducers. The states of the
composition T are pairs of a T1 state and a T2 state. T
satisfies the following conditions: (1) its initial state
is the pair of the initial state of T1 and the initial state
of T2; (2) its final states are pairs of a final state of
T1 and a final state of T2, and (3) there is a transition
t from (q1, q2) to (r1, r2) for each pair of transitions
t1 from q1 to r1 and t2 from q2 to r2 such that the
output label of t1 matches the input label of t2. The
transition t takes its input label from t1, its output la-
bel from t2, and its weight is the combination of the
weights of t1 and t2 done with the same operation
that combines weights along a path. Since this com-
putation is local — it involves only the transitions
leaving two states being paired — it can be given
a lazy implementation in which the composition is
generated only as needed by other operations on the
composed automaton. Transitions with ϵ-labels in T1

or T2 must be treated specially as discussed in Sec-
tion 3. Figure 3 shows two simple transducers, Fig-
ure 3(a) and Figure 3(b), and the result of their com-
position, Figure 3(c). The weight of a path in the

a c a à b a a à c b b

a c a à c b b

+ WFSTs in Action with OpenFST

n Create text file

n Compile

n Print

n Show info

n Union

n Concatenate

n Compose

n Invert

23

OpenFst Quick Tour
Finding and Using the Library
Example FST
Creating FSTs

Creating FSTs Using Constructors and Mutators From C++
Creating FSTs Using Text Files from the Shell

Accessing FSTs
Accessing FSTs from C++
Printing, Drawing and Summarizing FSTs from the Shell

FST Operations
Calling FST Operations

Calling FST Operations from C++
Calling FST Operations from the Shell

Example Use: FST Application
FST Application from C++
FST Application from the Shell

Available FST Operations
FST Weights

OpenFst Quick Tour
Below is a brief tutorial on the OpenFst library. After reading this, you may wish to browse the Advanced Usage topic for
greater detail, read the library Conventions topic to ensure correct usage and read the Efficiency topic for to ensure
efficient usage.

Finding and Using the Library

The OpenFst library is a C++ template library. From C++, include <fst/fstlib.h> in the installation include directory and
link to libfst.so in the installation library directory. (You may instead use just those include files for the classes and
functions that you will need.) All classes and functions are in the fst namespace; the examples below assume you are
within that namespace for brevity. (Include <fst/fst-decl.h> if forward declaration of the public OpenFst classes is
needed.)

As an alternative interface, there are shell-level commands in the installation bin directory that operate on file
representations of FSTs. The command-line flag --help will give usage information.

Example FST

The following picture depicts a finite state transducer:

TWiki > FST Web > FstQuickTour (2015-10-14, KyleGorman)

+ Math behind WFSTs: Semirings 24

Weight Sets: Semirings

A semiring (K,⊕,⊗, 0, 1) = a ring that may lack negation.

• Sum: to compute the weight of a sequence (sum of the weights of the paths

labeled with that sequence).

• Product: to compute the weight of a path (product of the weights of con-

stituent transitions).

Semiring Set ⊕ ⊗ 0 1

Boolean {0, 1} ∨ ∧ 0 1

Probability R+ + × 0 1

Log R ∪ {−∞, +∞} ⊕log + +∞ 0

Tropical R ∪ {−∞, +∞} min + +∞ 0

String Σ∗ ∪ {∞} ∧ · ∞ ϵ

⊕log is defined by: x⊕log y = − log(e−x +e−y) and ∧ is longest common prefix.

The string semiring is a left semiring.

OpenFst Part I. Algorithms Preliminaries 2

+ Same FSA, multiple purposes 25

Weighted Automaton/Acceptor

0

1/2a/1

b/4

2

a/2

b/1

3/2

b/1
c/3

b/3

c/5

Probability semiring (R+, +,×, 0, 1) Tropical semiring (R+ ∪ {∞}, min, +,∞, 0)

[[A]](ab) = 14 [[A]](ab) = 4

(1× 1× 2 + 2× 3× 2 = 14) (min(1 + 1 + 2, 3 + 2 + 2) = 4)

OpenFst Part I. Algorithms Preliminaries 3

Viterbi
Algorithm

Forward
Algorithm

+ Optimization Algorithms 26

Optimization Algorithms – Overview

• Definitions

Operation Description

Connection Removes non-accessible/non-coaccessible states

ϵ-Removal Removes ϵ-transitions

Determinization Creates equivalent deterministic machine

Pushing Creates equivalent pushed/stochastic machine

Minimization Creates equivalent minimal deterministic machine

• Conditions: There are specific semiring conditions for the use of these

algorithms. Not all weighted automata or transducers can be determinized

using that algorithm.

OpenFst Part I. Algorithms Optimization Algorithms 23

+ The Speech Problem 27

HMM
Search
Space

Audio

Text

Language
model

Lexicon

Search through space of all possible sentences
Defined by the HMM

Pick the one that is most probable given the
waveform.

Based on the transition and output probabilities
in the HMM

Acoustic
model

+ Weighted Finite State Transducers
n Used by Kaldi

n Weighted finite state automaton that transduces an input
sequence to an output sequence (Mohri 2008)
n States connected by transitions.
n Each transition has an input label and output label weight

28

Thanks to Steve Renals for these slides.

+ Weighted Finite State Acceptors 29

Weighted Finite State Acceptors
Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

ASR Lecture 13 Decoding and WFSTs 10

Weighted Finite State Acceptors
Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

ASR Lecture 13 Decoding and WFSTs 10

Word sequences:

Phoneme sequences:

Thanks to Steve Renals for these slides.

+ Weighted Finite State Transducers 30

Weighted Finite State Transducers

Acceptor

Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

Transducer

Springer Handbook on Speech Processing and Speech Communication 4

(a)

0 1
using:using/1

2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5

d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

Figure 2: Weighted finite-state transducer examples. These are similar to the weighted acceptors in Figure 1
except output labels are introduced on each transition. The input label i, the output label o, and weight w of
a transition are marked on the corresponding directed arc by i : o/w.

nal power series [Salomaa and Soittola, 1978, Bers-
tel and Reutenauer, 1988, Kuich and Salomaa, 1986].
Many of those operations are the weighted trans-
ducer generalizations of classical algorithms for un-
weighted acceptors. We have brought together those
and a variety of auxiliary operations in a comprehen-
sive weighted finite-state machine software library
(FsmLib) available for non-commercial use from the
AT&T Labs – ResearchWeb site [Mohri et al., 2000].

Basic union, concatenation, and Kleene closure
operations combine transducers in parallel, in series,
and with arbitrary repetition, respectively. Other op-
erations convert transducers to acceptors by project-
ing onto the input or output label set, find the best
or the n best paths in a weighted transducer, remove
unreachable states and transitions, and sort acyclic
automata topologically.

Where possible, we provided lazy (also called on-
demand) implementations of algorithms. Any finite-
state object fsm can be accessed with the three main
methods fsm.start(), fsm.final(state),
and fsm.transitions(state) that return the
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface can
be implemented for concrete automata in an obvious
way: the methods simply return the requested infor-
mation from a stored representation of the automa-

ton. However, the interface can also be given lazy
implementations. For example, the lazy union of two
automata returns a new lazy fsm object. When the
object is first constructed, the lazy implementation
just initializes internal book-keeping data. It is only
when the interface methods request the start state, the
final weights, or the transitions (and their destination
states) leaving a state, that this information is actually
computed, and optionally cached inside the object for
later reuse. This approach has the advantage that if
only a part of the result of an operation is needed (for
example in a pruned search), then the unused part is
never computed, saving time and space. We refer the
interested reader to the library documentation and an
overview of the library [Mohri et al., 2000] for fur-
ther details on lazy finite-state objects.

We now discuss the key transducer operations
that are used in our speech applications for model
combination, redundant path removal, and size re-
duction, respectively.

2.3. Composition

Composition is the transducer operation for com-
bining different levels of representation. For in-
stance, a pronunciation lexicon can be composed
with a word-level grammar to produce a phone-to-

ASR Lecture 13 Decoding and WFSTs 11

Weighted Finite State Transducers

Acceptor

Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

Transducer

Springer Handbook on Speech Processing and Speech Communication 4

(a)

0 1
using:using/1

2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5

d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

Figure 2: Weighted finite-state transducer examples. These are similar to the weighted acceptors in Figure 1
except output labels are introduced on each transition. The input label i, the output label o, and weight w of
a transition are marked on the corresponding directed arc by i : o/w.

nal power series [Salomaa and Soittola, 1978, Bers-
tel and Reutenauer, 1988, Kuich and Salomaa, 1986].
Many of those operations are the weighted trans-
ducer generalizations of classical algorithms for un-
weighted acceptors. We have brought together those
and a variety of auxiliary operations in a comprehen-
sive weighted finite-state machine software library
(FsmLib) available for non-commercial use from the
AT&T Labs – ResearchWeb site [Mohri et al., 2000].

Basic union, concatenation, and Kleene closure
operations combine transducers in parallel, in series,
and with arbitrary repetition, respectively. Other op-
erations convert transducers to acceptors by project-
ing onto the input or output label set, find the best
or the n best paths in a weighted transducer, remove
unreachable states and transitions, and sort acyclic
automata topologically.

Where possible, we provided lazy (also called on-
demand) implementations of algorithms. Any finite-
state object fsm can be accessed with the three main
methods fsm.start(), fsm.final(state),
and fsm.transitions(state) that return the
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface can
be implemented for concrete automata in an obvious
way: the methods simply return the requested infor-
mation from a stored representation of the automa-

ton. However, the interface can also be given lazy
implementations. For example, the lazy union of two
automata returns a new lazy fsm object. When the
object is first constructed, the lazy implementation
just initializes internal book-keeping data. It is only
when the interface methods request the start state, the
final weights, or the transitions (and their destination
states) leaving a state, that this information is actually
computed, and optionally cached inside the object for
later reuse. This approach has the advantage that if
only a part of the result of an operation is needed (for
example in a pruned search), then the unused part is
never computed, saving time and space. We refer the
interested reader to the library documentation and an
overview of the library [Mohri et al., 2000] for fur-
ther details on lazy finite-state objects.

We now discuss the key transducer operations
that are used in our speech applications for model
combination, redundant path removal, and size re-
duction, respectively.

2.3. Composition

Composition is the transducer operation for com-
bining different levels of representation. For in-
stance, a pronunciation lexicon can be composed
with a word-level grammar to produce a phone-to-

ASR Lecture 13 Decoding and WFSTs 11

Thanks to Steve Renals for these slides.

+ Weighted Finite State Transducers 31
Weighted Finite State Transducers

Acceptor

Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

Transducer

Springer Handbook on Speech Processing and Speech Communication 4

(a)

0 1
using:using/1

2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5

d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

Figure 2: Weighted finite-state transducer examples. These are similar to the weighted acceptors in Figure 1
except output labels are introduced on each transition. The input label i, the output label o, and weight w of
a transition are marked on the corresponding directed arc by i : o/w.

nal power series [Salomaa and Soittola, 1978, Bers-
tel and Reutenauer, 1988, Kuich and Salomaa, 1986].
Many of those operations are the weighted trans-
ducer generalizations of classical algorithms for un-
weighted acceptors. We have brought together those
and a variety of auxiliary operations in a comprehen-
sive weighted finite-state machine software library
(FsmLib) available for non-commercial use from the
AT&T Labs – ResearchWeb site [Mohri et al., 2000].

Basic union, concatenation, and Kleene closure
operations combine transducers in parallel, in series,
and with arbitrary repetition, respectively. Other op-
erations convert transducers to acceptors by project-
ing onto the input or output label set, find the best
or the n best paths in a weighted transducer, remove
unreachable states and transitions, and sort acyclic
automata topologically.

Where possible, we provided lazy (also called on-
demand) implementations of algorithms. Any finite-
state object fsm can be accessed with the three main
methods fsm.start(), fsm.final(state),
and fsm.transitions(state) that return the
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface can
be implemented for concrete automata in an obvious
way: the methods simply return the requested infor-
mation from a stored representation of the automa-

ton. However, the interface can also be given lazy
implementations. For example, the lazy union of two
automata returns a new lazy fsm object. When the
object is first constructed, the lazy implementation
just initializes internal book-keeping data. It is only
when the interface methods request the start state, the
final weights, or the transitions (and their destination
states) leaving a state, that this information is actually
computed, and optionally cached inside the object for
later reuse. This approach has the advantage that if
only a part of the result of an operation is needed (for
example in a pruned search), then the unused part is
never computed, saving time and space. We refer the
interested reader to the library documentation and an
overview of the library [Mohri et al., 2000] for fur-
ther details on lazy finite-state objects.

We now discuss the key transducer operations
that are used in our speech applications for model
combination, redundant path removal, and size re-
duction, respectively.

2.3. Composition

Composition is the transducer operation for com-
bining different levels of representation. For in-
stance, a pronunciation lexicon can be composed
with a word-level grammar to produce a phone-to-

ASR Lecture 13 Decoding and WFSTs 12

Weighted Finite State Transducers

Acceptor

Springer Handbook on Speech Processing and Speech Communication 3

0 1
using/1

2data/0.66

3

intuition/0.33

4

is/1
5

better/0.7

worse/0.3

(a)

are/0.5

is/0.5

(b)

0 1d/1 2ey/0.5
ae/0.5

3t/0.3
dx/0.7

4ax/1

(c)
0

d1

1d1

d2

2d2

d3

3d3

Figure 1: Weighted finite-state acceptor examples. By convention, the states are represented by circles and
marked with their unique number. The initial state is represented by a bold circle, final states by double
circles. The label l and weight w of a transition are marked on the corresponding directed arc by l/w. When
explicitly shown, the final weight w of a final state f is marked by f/w.

quite similar to a weighted acceptor except that it has
an input label, an output label and a weight on each
of its transitions. The examples in Figure 2 encode
(a superset of) the information in the WFSAs of Fig-
ure 1(a)-(b) as WFSTs. Figure 2(a) represents the
same language model as Figure 1(a) by giving each
transition identical input and output labels. This adds
no new information, but is a convenient way we use
often to treat acceptors and transducers uniformly.

Figure 2(b) represents a toy pronunciation lexi-
con as a mapping from phone strings to words in
the lexicon, in this example data and dew, with
probabilities representing the likelihoods of alterna-
tive pronunciations. It transduces a phone string that
can be read along a path from the start state to a fi-
nal state to a word string with a particular weight.
The word corresponding to a pronunciation is out-
put by the transition that consumes the first phone
for that pronunciation. The transitions that consume
the remaining phones output no further symbols, in-
dicated by the null symbol ϵ as the transition’s output
label. In general, an ϵ input label marks a transition
that consumes no input, and an ϵ output label marks
a transition that produces no output.

This transducer has more information than the
WFSA in Figure 1(b). Since words are encoded by

the output label, it is possible to combine the pronun-
ciation transducers for more than one word without
losing word identity. Similarly, HMM structures of
the form given in Figure 1(c) can be combined into
a single transducer that preserves phone model iden-
tity. This illustrates the key advantage of a transducer
over an acceptor: the transducer can represent a rela-
tionship between two levels of representation, for in-
stance between phones and words or between HMMs
and context-independent phones. More precisely, a
transducer specifies a binary relation between strings:
two strings are in the relation when there is a path
from an initial to a final state in the transducer that
has the first string as the sequence of input labels
along the path, and the second string as the sequence
of output labels along the path (ϵ symbols are left
out in both input and output). In general, this is a
relation rather than a function since the same input
string might be transduced to different strings along
two distinct paths. For a weighted transducer, each
string pair is also associated with a weight.

We rely on a common set of weighted trans-
ducer operations to combine, optimize, search and
prune them [Mohri et al., 2000]. Each operation
implements a single, well-defined function that has
its foundations in the mathematical theory of ratio-

Transducer

Springer Handbook on Speech Processing and Speech Communication 4

(a)

0 1
using:using/1

2data:data/0.66

3
intuition:intuition/0.33

4

is:is/0.5

are:are/0.5

is:is/1

5
better:better/0.7

worse:worse/0.3

(b)

0

1d:data/1

5

d:dew/1

2
ey:ε/0.5

ae:ε/0.5

6
uw:ε/1

3
t:ε/0.3

dx:ε/0.7
4

ax: ε /1

Figure 2: Weighted finite-state transducer examples. These are similar to the weighted acceptors in Figure 1
except output labels are introduced on each transition. The input label i, the output label o, and weight w of
a transition are marked on the corresponding directed arc by i : o/w.

nal power series [Salomaa and Soittola, 1978, Bers-
tel and Reutenauer, 1988, Kuich and Salomaa, 1986].
Many of those operations are the weighted trans-
ducer generalizations of classical algorithms for un-
weighted acceptors. We have brought together those
and a variety of auxiliary operations in a comprehen-
sive weighted finite-state machine software library
(FsmLib) available for non-commercial use from the
AT&T Labs – ResearchWeb site [Mohri et al., 2000].

Basic union, concatenation, and Kleene closure
operations combine transducers in parallel, in series,
and with arbitrary repetition, respectively. Other op-
erations convert transducers to acceptors by project-
ing onto the input or output label set, find the best
or the n best paths in a weighted transducer, remove
unreachable states and transitions, and sort acyclic
automata topologically.

Where possible, we provided lazy (also called on-
demand) implementations of algorithms. Any finite-
state object fsm can be accessed with the three main
methods fsm.start(), fsm.final(state),
and fsm.transitions(state) that return the
start state, the final weight of a state, and the transi-
tions leaving a state, respectively. This interface can
be implemented for concrete automata in an obvious
way: the methods simply return the requested infor-
mation from a stored representation of the automa-

ton. However, the interface can also be given lazy
implementations. For example, the lazy union of two
automata returns a new lazy fsm object. When the
object is first constructed, the lazy implementation
just initializes internal book-keeping data. It is only
when the interface methods request the start state, the
final weights, or the transitions (and their destination
states) leaving a state, that this information is actually
computed, and optionally cached inside the object for
later reuse. This approach has the advantage that if
only a part of the result of an operation is needed (for
example in a pruned search), then the unused part is
never computed, saving time and space. We refer the
interested reader to the library documentation and an
overview of the library [Mohri et al., 2000] for fur-
ther details on lazy finite-state objects.

We now discuss the key transducer operations
that are used in our speech applications for model
combination, redundant path removal, and size re-
duction, respectively.

2.3. Composition

Composition is the transducer operation for com-
bining different levels of representation. For in-
stance, a pronunciation lexicon can be composed
with a word-level grammar to produce a phone-to-

ASR Lecture 13 Decoding and WFSTs 12

Thanks to Steve Renals for these slides.

+ WFTS Algorithms
n Composition

n Combine transducers at different levels.
n For example if G is a finite state grammar and L is a pronunciation dictionary

then L ◦ G transduces a phone string to word strings allowed by the grammar

n Determinization
n Ensure that each state has no more than a single output transition for a

given input label

n Minimization
n transforms a transducer to an equivalent transducer with the fewest possible

states and transitions

32

Thanks to Steve Renals for these slides.

+ Applying WFSTs to speech recognition
n Represent the following components as WFSTs

n Composing L and G results in a transducer L ◦ G that
maps a phone sequence to a word sequence

n H ◦ C ◦ L◦ G results in a transducer that maps from HMM
states to a word sequence

33

Applying WFSTs to speech recognition

Represent the following components as WFSTs

transducer input sequence output sequence

G word-level grammar words words

L pronunciation lexicon phones words

C context-dependency CD phones phones

H HMM HMM states CD phones

Composing L and G results in a transducer L � G that maps a

phone sequence to a word sequence

H � C � L � G results in a transducer that maps from HMM

states to a word sequence

ASR Lecture 13 Decoding and WFSTs 14

Thanks to Steve Renals for these slides.

+ L, G 34

L, G

G

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

L

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

ASR Lecture 13 Decoding and WFSTs 15

L, G

G

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

L

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

ASR Lecture 13 Decoding and WFSTs 15

Thanks to Steve Renals for these slides.

+ Determinization (making the FSA deterministic) 35

L � G , det(L � G), min(det(L � G))

L � G

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

det(L � G)

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

min(det(L � G))

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

ASR Lecture 13 Decoding and WFSTs 16

L � G , det(L � G), min(det(L � G))

L � G

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

det(L � G)

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

min(det(L � G))

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

ASR Lecture 13 Decoding and WFSTs 16

Thanks to Steve Renals for these slides.

+

Determinization

36

L � G , det(L � G), min(det(L � G))

L � G

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

det(L � G)

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

min(det(L � G))

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

ASR Lecture 13 Decoding and WFSTs 16

L � G , det(L � G), min(det(L � G))

L � G

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

det(L � G)

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

min(det(L � G))

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

ASR Lecture 13 Decoding and WFSTs 16

Thanks to Steve Renals for these slides.

+ Minimization 37

L � G , det(L � G), min(det(L � G))

L � G

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

det(L � G)

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

min(det(L � G))

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

ASR Lecture 13 Decoding and WFSTs 16

L � G , det(L � G), min(det(L � G))

L � G

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

det(L � G)

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

min(det(L � G))

Springer Handbook on Speech Processing and Speech Communication 24

0 1

jim/1.386
jill/0.693
bill/1.386 2/0

read/0.400
wrote/1.832
fled/1.771

(a)

0

14jh:jim

10jh:jill

1b:bill

18
r:read

22
r:read

26
r:wrote

5f:fled

15ih:<eps>

11ih:<eps>

2ih:<eps>

19eh:<eps>

23iy:<eps>

27ow:<eps>

6l:<eps>

3
l:<eps>

4

#0:<eps>
<eps>:<eps>

7eh:<eps>
8

d:<eps>

9

#0:<eps>

<eps>:<eps>

12
l:<eps>

13
#0:<eps>

<eps>:<eps>

16
m:<eps>

17
#0:<eps>

<eps>:<eps>

20d:<eps>

21
#0:<eps>

<eps>:<eps>

24d:<eps>
25

#0:<eps>

<eps>:<eps>

28t:<eps> 29#0:<eps>
<eps>:<eps>

30 <eps>:<eps>

(b)

0

2jh:jim/1.386

19jh:jill/0.693

22

b:bill/1.386

3ih:<eps>/0

20ih:<eps>/0

23ih:<eps>/0

1/0

4m:<eps>/0

5

#0:<eps>/0
6r:read/0.400

9r:read/0.400

12
r:wrote/1.832

15
f:fled/1.771

7eh:<eps>/0

10iy:<eps>/0

13ow:<eps>/0

16l:<eps>/0

8d:<eps>/0 #0:<eps>/0

11
d:<eps>/0 #0:<eps>/0

14t:<eps>/0
#0:<eps>/0

17eh:<eps>/0 18d:<eps>/0

#0:<eps>/0
21l:<eps>/0 #0:<eps>/0

24l:<eps>/0

#0:<eps>/0

(c)

0
2b:bill/1.386

3
jh:<eps>/0.693

4ih:<eps>/0

5ih:<eps>/0 1/0
6l:<eps>/0

7l:jill/0

8

m:jim/0.693 9

#0:<eps>/0

#0:<eps>/0
#0:<eps>/0

10f:fled/1.771

11
r:<eps>/0.400

12l:<eps>/0
13eh:read/0

14
iy:read/0

15

ow:wrote/1.432

16eh:<eps>/0

17d:<eps>/0

18d:<eps>/0

19t:<eps>/0

20d:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

#0:<eps>/0

(d)

0
2b:bill/0.693

3
jh:<eps>/0

4ih:<eps>/0

13ih:<eps>/0 1/05

l:<eps>/0
l:jill/0

m:jim/0.693
6#0:<eps>/0

7f:fled/1.371

8r:<eps>/0

9l:<eps>/0

10iy:read/0
eh:read/0

12
ow:wrote/1.431

eh:<eps>/0

11
d:<eps>/0

t:<eps>/0
#0:<eps>/1.093

(e)

0
2b:bill/1.386

3
jh:<eps>/0.287

4ih:<eps>/0

11ih:<eps>/0 1/05

l:<eps>/0
l:jill/0.405

m:jim/1.098

6f:fled/2.284

7r:<eps>/0.107

8l:<eps>/0

9eh:read/0.805
iy:read/0.805

10
ow:wrote/2.237

eh:<eps>/0

d:<eps>/0

t:<eps>/0

(f)

Figure 17: Recognition transducer construction: (a) grammar G, (b) lexicon L̃, (c) L̃ ◦G, (d) det(L̃ ◦G), (e)
mintropical(det(L̃ ◦G)), (f) minlog(det(L̃ ◦G)).

ASR Lecture 13 Decoding and WFSTs 16

Thanks to Steve Renals for these slides.

+ Context Dependency transducer 38

From phones to triphones

Context dependency transducer C

Context-independent “string”

Springer Handbook on Speech Processing and Speech Communication 21

(a)

0 1x 2y 3x 4x 5y

(b)

0 1x:x/e_y 2y:y/x_x 3x:x/y_x 4x:x/x_y 5y:y/x_e

(c)

0 1x
5

y

2y
4

x
3x

y

y

(d)

0 1x:x/e_y

2

y:y/x_e

3

y:y/x_x

4x:x/y_x 5x:x/x_y
y:y/x_e

6

y:y/x_y y:y/y_e
y:y/y_x

Figure 16: Context-dependent composition examples: (a) context-independent ‘string’, (b) context-
dependency applied to (a), (c) context-independent automaton, (d) context-dependency applied to (c).

Context-dependency transducer (weights not shown)

Springer Handbook on Speech Processing and Speech Communication 21

(a)

0 1x 2y 3x 4x 5y

(b)

0 1x:x/e_y 2y:y/x_x 3x:x/y_x 4x:x/x_y 5y:y/x_e

(c)

0 1x
5

y

2y
4

x
3x

y

y

(d)

0 1x:x/e_y

2

y:y/x_e

3

y:y/x_x

4x:x/y_x 5x:x/x_y
y:y/x_e

6

y:y/x_y y:y/y_e
y:y/y_x

Figure 16: Context-dependent composition examples: (a) context-independent ‘string’, (b) context-
dependency applied to (a), (c) context-independent automaton, (d) context-dependency applied to (c).

(x/e_y – x with left context e (start/end) and right context y)

ASR Lecture 13 Decoding and WFSTs 17

Thanks to Steve Renals for these slides.

+ Decoding using WFSTs
n We can represent the HMM acoustic model, pronunciation lexicon and n-gram

language model as four transducers: H, C, L, G

n Combining the transducers gives an overall “decoding graph” for our ASR
system – but minimization and determinization means it is much smaller than
naively combining the transducers

n But it is important in which order the algorithms are combined otherwise the
transducers may “blow-up” – basically after each composition, first determinize
then minimize

n In Kaldi, ignoring one or two details

39

Decoding using WFSTs

We can represent the HMM acoustic model, pronunciation

lexicon and n-gram language model as four transducers: H, C,

L, G

Combining the transducers gives an overall “decoding graph”

for our ASR system – but minimisation and determination

means it is much smaller than naively combining the

transducers

But it is important in which order the algorithms are

combined otherwise the transducers may “blow-up” – basically

after each composition, first determinise then minimise

In Kaldi, ignoring one or two details

HCLG = min(det(H �min(det(C �min(det(L � G))))))

ASR Lecture 13 Decoding and WFSTs 18

Thanks to Steve Renals for these slides.

