Finite State
Transducer

WFST: Weighted - -

CS136 Speech Recognition
January 24, 2020
Prof. Marie Meteer

+ FSAs: Arecurring structure in speech

Viterbi trellis

PE
NO20
Language model Word model for "the”

Pronunciation modeling

+ The language of sheep:_/baa+!/ I

b a a () !
@ @ 8 & @
State Transition Final state
= We can say the following things about this machine
= It has 5 states
= b, a, and ! are in its alphabet
= qq IS the start state

= q, IS an accept state
m It has 5 transitions

+FSM as an Ineput tape acceptor
@ 2 & 2 é ! = Transition Table

Given an input “tape”, does my machine accept or reject that input?

Ao b|a I |e
é a|lbja|!|Db 0 1
1T 1 2
o 2 3
é b|la|a]! 3 3 H:
dg 4

b
T
P

Ny >
é bla|a|! | £ LA
L

Brandeis CS114 2013 Meteer

+ Non-Determinisrr;1 I.

b a a () |
(o) (@ (92 (3
Both define /baa+/

aa! b|la I Je

0
1 2
- 2 2,3
b lala Stay in g2 or i
Input: go to q3? i 4

Brandeis CS114 2013 Meteer

+ Non-Determinism cont. |.

= Yet another technique
= Epsilon transitions

m Key point: these transitions do not examine or advance the
tape during recognition

@) e e @)

Brandeis CS114 2013 Meteer

Equivalence |

m Non-deterministic machines can be converted to
deterministic ones with a fairly simple construction

That means that they have the same power:

non-deterministic machines are not more powerful than deterministic
ones in terms of the languages they can accept

m Two basic approaches to ND recognition (used in all major
implementations of regular expressions)

Either take a ND machine and convert it to a D machine and then do
recognition with that.

Or explicitly manage the process of recognition as a state-space
search (leaving the machine as is).

Brandeis CS114 2013 Meteer

+ Non-Deterministic Recognition: Search I.

m In a ND FSA there exists at least one path through the machine for a
string that is in the language defined by the machine.

m But not all paths directed through the machine for an accept string
lead to an accept state.

m No paths through the machine lead to an accept state for a string not
In the language.

m Non-determinism doesn’t get us more formal power and it causes headaches so
why bother?

= More natural (understandable) solutions

Brandeis CS114 2013 Meteer

+ Example

é b|a|a|a|'| | |§ a
@:‘ b a () a !
@@ (@@
Y
é|b|a|a|a|'| | |§

(a,

+

\
é|b|a|a|a|!| I |§

o

5 %|b|a|a\|/a|!

Brandeis CS114 2013 Meteer

[1 s 6

é|b|a|a a|!
| o
§|b|a|a|a!|

G

L s 7

% |b|a|a|a|!

+ Compositional Machines
= Formal languages are just sets of strings

= Therefore, we can talk about various set operations
(intersection, union, concatenation)

m This turns out to be a useful exercise

Concatenation

Speech and Language Processing - Jurafsky and Martin 1/23/20

+ Weighted finite state acceptors | "

orror

m Like a normal FSA but with costs on the arcs and final-states
m Note: cost comes after “/”. For final-state, “2/1” means final-cost 1 on state 2.

= View WFSA as a function from a string to a cost.
= |n this view, unweighted FSA is f : string — {0, }.

m |If multiple paths have the same string, take the one with the lowest
cost.

m This example maps ab to (3 = 1+1+1), all else to .

Thanks for Mirko Hannemann for this slide

+ Welghts vs. costs

m Use “cost” to refer to the numeric value, and “weight”
when speaking abstractly, e.qg.:
= The acceptor above accepts a with unit weight.
= |t accepts a with zero cost.
= It accepts bc with cost 4=2+1+1
= State 1 is final with unit weight.
= The acceptor assigns zero weight to xyz.

= |t assigns infinite cost to xyz .
Thanks for Mirko Hannemann for this slide

+WSFASs in speech

Language modeling

data/0.66
@ using/1

Pronunciation modeling

better/0.7

worse/0.3

intuition/0.33

(a)
d/1 : ey05 (W03 /. ax/1 =®

ae/0.5 dx/0.7

+ Operations: Union

Sum (Union) — lllustration

o Definition: [T1 @ T2](x,y) = [T1](z,vy) ® [T2](x,y)

e Example:

red/O 5

green/0.4
blue/1.2
green/0.3 blue/0
yellow/0.6

red/0.5

green/0.3 1 blue/0
eps/0 yellow/0.6

green/0.4
blue/1.2

+ Unary Operation: Concatenation

Product (Concatenation) — Illustration
o Definition: [Ty @ To](z,9) = D [Tl(z1,51) ® [To](w2, y2)
L=T1L2,Y=Y1Y2
e Example:
green/0.4
red/05 G<
blue/1.2
0 green/0.3 1 blue/0
yellow/0.6
red/0.5

green/0.4
e 0 S green/0.3 m blue/0 2 eps/0.8
o o lue/1.2
yellow/O 6 blue/

+ Unary Operation: Closure

Closure — lllustration
e Definition: [T*](x,y) = @[[T"]](a:,y)
n=0

e Example:

green/0.4

+ Unary Operation: Reversal

Reversal — lllustration

~

e Definition: [T)(z,y) = [T](Z,7)

red/0.5
green/1.2
603 green/0.3 /") blue0 /", e
yellow/0.6

e Example:

green/1.2
blue/0

yellow/0.6

blue/2

+ Binary operation: Intersection

Intersection — lllustration

e Definition: [A1 N A2](x) = [A1](2) ® [A2](x)

e Example:
red/0.5 green/0.4
eo S green/0.3 ~/1—\ blue/0 red/0.2 ‘(* 1 ’\ yellow/1.3
yellow/0.6 blue/0.6

blue/0.6

(:) red/0.7 (1 > green/0.7

yellow/1.9

+ Binary operation: difference

Difference — lllustration

o Definition: [A; — Az2](x) = [A1 N Az] (=)

e Example:
red/0.5 green
<‘0) green/0.3 > red yellow @
yellow/0.6 ~ > -
red/0.5
red/0.5 @ red/0.5 e green/0.3
0 green/0.3 3 blue/0

yellow/0.6

+WFS Transducer

= Accept an input while producing an outpclél;to-3

input output weight

NV

a:b/0.3

= [nput phonemes: output words

t:€/0.3
dx:e/0.7

d:data/1

d:dew/1

+FST for morphology: Foxes and Cats

[_exical é

f

O

X

+N

+PI

T ©OO@G®@

Intermediate é

A\ 4
A

A
A

A
A

N

S

#

Teinsert © © <0> R2<3 <“>;0>

Surface é "

f

O

X

e

S

I

1/23/20

+ Composition

c:a/0.3

a:b/0.6

. b:c/0.3 . a:b/04 ‘

\ aca—->baa—>cbb

Y ¢:b/0.9
IR

c:b/0.7 0 a:b/1
a:c/0.4 /
a:b/0.8

aca—->chb

+WFSTs in Action with OpenFST

a:x/0.5 ! c:zf2.5
b:y/1.5
m Create text file = Union
= Compile m Concatenate
m Print m Compose

m Show info m Invert

+ Math behind WFSTs: Semirings

Weight Sets: Semirings

A semiring (K, ®,®,0,1) = a ring that may lack negation.

e Sum: to compute the weight of a sequence (sum of the weights of the paths
labeled with that sequence).

e Product: to compute the weight of a path (product of the weights of con-
stituent transitions).

SEMIRING SET ® |®| 0 |1
Boolean {0,1} v A 0 1
Probability Ry + X 0 1
Log RU{—o00,400} | Biog | + | +00 | O
Tropical RU{—00,400} | min | + | +00 | 0
String ¥ UA{oo} A : 0o | €

Biog is defined by: @1y = —log(e™* +e7¥) and A is longest common prefix.
The string semiring is a left semiring.

+Same FSA, multiple purposes

Weighted Automaton/Acceptor

Forward Viterbi

Algorithm Algorithm

\ e

Probability semiring (R, 4+, x,0,1) | Tropical semiring (R4+ U {oco}, min, +, oo, 0)
[A](ab) = 14 [A](ab) = 4
(I1x1x242x3x2=14) (min(1+14+2,34+2+2) =4)

+ Optimization Algorithms

Optimization Algorithms — Overview

e Definitions

OPERATION DESCRIPTION
Connection Removes non-accessible /non-coaccessible states
e-Removal Removes e-transitions

Determinization | Creates equivalent deterministic machine

Pushing Creates equivalent pushed/stochastic machine

Minimization Creates equivalent minimal deterministic machine

e Conditions: There are specific semiring conditions for the use of these
algorithms. Not all weighted automata or transducers can be determinized
using that algorithm.

+ The Speech Problem

Search through space of all possible sentences
Defined by the HMM
Pick the one that is most probable given the

waveform.
Based on the transition and output probabilities Aydio
in the HMM

HMM
Search

Space

e

Acoustic
model

+ Weighted Finite State Transducers |
= Used by Kaldi

= Weighted finite state automaton that transduces an input
sequence to an output sequence (Mohri 2008)

= States connected by transitions.
m Each transition has an input label and output label weight

Thanks to Steve Renals for these slides.

+Weighted Finite State Acceptors

Word sequences:

better/0.7

Thanks to Steve Renals for these slides.

+ Weighted Finite State Transducers

Acceptor

@ using/1

better/0.7

worse/0.3

Transducer

@ using:using/1

data:data/0.66 Q-:
are:are/0.5 «

a« worse:worse/0.3

L T = is:1s/1
intuition:intuition/0.33

Thanks to Steve Renals for these slides.

+ Weighted Finite State Transducers

Acceptor
d/1 : ey/0.5 5 t/0.3 ; ax/1 @
ae/0.5 dx/0.7
Transducer

Thanks to Steve Renals for these slides.

+ WFTS Algorithms |

= Composition
m Combine transducers at different levels.

m For example if G is a finite state grammar and L is a pronunciation dictionary
then L - G transduces a phone string to word strings allowed by the grammar

m Determinization

= Ensure that each state has no more than a single output transition for a
given input label

m Minimization

= transforms a transducer to an equivalent transducer with the fewest possible
states and transitions

Thanks to Steve Renals for these slides.

Applying WFSTs to speech recognition I

m Represent the following components as WFSTs

transducer

input sequence

output sequence

word-level grammar
pronunciation lexicon

context-dependency
HMM

T O o

words
phones

CD phones
HMM states

words
words

phones
CD phones

m Composing L and G results in a transducer L ° G that
maps a phone sequence to a word sequence

mH-C-°LoGresults in a transducer that maps from HMM
states to a word sequence

Thanks to Steve Renals for these slides.

read/0.400

wrote/1.832
fled/1.771

hi ih:<eps> l:<eps>

brbill G P P #0:<eps>
<eps>:<eps> \

ihjil @&

<eps>:<eps>

. G ih:<eps> G m:<eps>
jhijim

<eps>:<eps>

f:fled l:<eps> /6\ eh:<eps>
N

° r:read
i Q eh:<eps> @ d:<eps>

- L G jim/1.386
3 ill/0.693

0 bill/1.386

L

\ <eps>.<eps>

<eps>:<eps>
<eps>:<eps>

rrread Q iy:<eps> @ di<eps>
<eps>:<eps>

5
18
22
r:wrote
. ow:<eps> . t:<eps>

<eps>:<eps>

Thanks to Steve Renals for these slides.

4 Determinization (making the FSA deterministic)

LoG

jh:jim/1.386

jheill0.693 (7 o™ ihi<eps>/0 () "\ L<eps>/0 (7, " #0:<eps>/0

bibil/1386 \ "/ #0:<eps>/0

d:<eps>/0

#0:<eps>/0

#0:<eps>/0

ih:<eps>/0 G\ m:<eps>/0
O/

r:read/0.400
r:wrote/1.832

ow:<eps>/0 t:<eps>/0

l:<eps>/0 @ eh:<eps>/0 m d:<eps>/0
NG NG

f:fled/1.771

ih:<eps>/0 @ l:<eps>/0

det(L o G)

l:<eps>/0

b:bill/1.386 @ ih:<eps>/0 @ L:<eps>/0 #0:<eps>/0 f:fled/1.771

jh:<eps>/0.693 @ ihi<eps>/0 (N L0\ #0:<eps>/0
m:jim/0.693 ___/ #0:<eps>/0

r:<eps>/0.400

Thanks to Steve Renals for these slides.

+ Lo G

D ete rm I n |Zat| O n jh:jim/1.386 @ ih:<eps>/0 @ m:<eps>/0 #0:<eps>/0

hijill0.693 (g ihi<eps>i0 [oo\ L<eps>l0 [#0:<eps>/0
bibill/1.386 | N W7 #0:<eps>/0

th:<eps>/0 63\ l:<eps>/0 24

th

det(L o G)

b:bill/1.386
jh:<eps>/0.693

ih:<eps>/0 /D l:<eps>/0 6 | #0:<eps>/0
N

ih:<eps>/0 /5\ 1:3ill/0 /\ #0:<eps>/0 /[~

m:jim/0.693 \/ #0:<eps>/0 \

Thanks to Steve Renals for these slides.

+ Minimization

b:bill/1.386
jh:<eps>/0.693

#0:<eps>/0

@ ih:<eps>/0 /5\ 1:§ill/0 /\ #0:<eps>/0

mjim/0.693 |/ #0:<eps>/0
min(det(L o G))
b:bill/0.693 @h:<eps>/0

Jh:<eps>/0 ih:<eps>/0

ih:<eps>/0 /D l:<eps>/0
NG

l:<eps>/0

#0:<eps>/0 /é\
m:jim/0.693 \

Thanks to Steve Renals for these slides.

+

Context Dependency transducer

From phones to triphones

Context-independent “string”

X y X X y
OO0
Context-dependency transducer (weights not shown)

@ x:x/e_y :m yiy/X_X :G\ X:x/y_x :G\ X:X/X_y :m yy/x_e :@
N N N N

(x/e_y — x with left context e (start/end) and right context y)

Thanks to Steve Renals for these slides.

Decoding using WFSTs |

m \We can represent the HMM acoustic model, pronunciation lexicon and n-gram
language model as four transducers: H, C, L, G

m Combining the transducers gives an overall “decoding graph” for our ASR
system — but minimization and determinization means it is much smaller than
naively combining the transducers

m But it is important in which order the algorithms are combined otherwise the

transducers may “blow-up” — basically after each composition, first determinize
then minimize

m In Kaldi. ianorina one or two details

HCLG = min(det(H o min(det(C o min(det(L o G))))))

Thanks to Steve Renals for these slides.

