

Recognition Architecture: Feature Extraction

CS 136 Speech Recognition January 21, 2020 Professor Meteer

Thanks to Dan Jurafsky for these slides

+ Phonetics

Phonemes and the ARPAbet

- An alphabet for transcribing American English phonetic sounds.
- Articulatory Phonetics
 - How speech sounds are made by articulators (moving organs) in mouth.
- Language resources and WFSTs

+ From speech to phonemes

- Phonemes are the minimal set of sounds to distinguish meaning
 - Pat bat, tab dab,
 - Fat chat that
 - Pack pick puck -- pike
- Uses the alphabet, but not isomorphic to spelling (especially in English)
- Standard used in speech recognition is the "ARPABET"
 - 46 total (17 vowels, 29 consonants) + 13 "extras
 - In practice there are many variations, but all are close
 - http://www.stanford.edu/class/cs224s/arpabet.html
 - NOTE: These are for English only—each language has its own set of phonemes

+ ARPAbet Vowels

	b_d	ARPA		b_d	ARPA
1	bead	iy	9	bode	ow
2	bid	ih	10	booed	uw
3	bayed	ey	11	bud	ah
4	bed	eh	12	bird	er
5	bad	ae	13	bide	ay
6	bod(y)	aa	14	bowed	aw
7	bawd	ao	15	Boyd	oy
8	Budd(hist)	uh			

Note: Many speakers pronounce Buddhist with the vowel uw as in booed, So for them [uh] is instead the vowel in "put" or "book"

George Miller figure Recognizing speech

Separating the filter from the source

- Articulation and Resonance
 - Shape of vocal tract

Phonation

 Airstream sets vocal folds in motion. Vibration of vocal folds produces sounds.

Respiration:

We (normally) speak while breathing out. Respiration provides airflow. "Pulmonic egressive airstream"

+ Phonation: Larynx and Vocal Folds

- The Larynx (voice box)
 - A structure made of cartilage and muscle
 - Located above the trachea (windpipe) and below the pharynx (throat)
 - Contains the vocal folds
 - (adjective for larynx: laryngeal)
- Vocal Folds (older term: vocal cords)
 - Two bands of muscle and tissue in the larynx
 - Can be set in motion to produce sound (voicing)

+ Voicing:

- Air comes up from lungs
- Forces its way through vocal folds, pushing open (2,3,4)
- This causes air pressure in glottis to fall, since:
 - when gas runs through constricted passage, its velocity increases (Venturi tube effect)
 - this increase in velocity results in a drop in pressure (Bernoulli principle)
- Because of drop in pressure, vocal cords snap together again (6-10)
- Single cycle: ~1/100 of a second.

Figure & text from John Coleman's web site

+ Voicelessness

- When vocal cords are open, air passes through unobstructed
- Voiceless sounds: p/t/k/s/f/sh/th/ch
- If the air moves very quickly, the turbulence causes a different kind of phonation: whisper

+ Articulators and resonance

From Mark Liberman's Web Site, from Language Files (7th ed)

+ Consonants and Vowels

Consonants: phonetically, sounds with audible noise produced by a constriction

Vowels: phonetically, sounds with no audible noise produced by a constriction

Place of articulation

Figure thanks to Jennifer Venditti

+ Manner of Articulation

- Stop: complete closure of articulators, so no air escapes through mouth
 - Oral stop: palate is raised, no air escapes through nose. Air pressure builds up behind closure, explodes when released
 - p, t, k, b, d, g
 - Nasal stop: oral closure, but palate is lowered, air escapes through nose.
 - m, n, ng
- Fricative
 - Close approximation of two articulators, resulting in turbulent airflow between them
 - f, v, s, z, th, dh
- Affricate
- Approximant

Oral

Nasal

Articulatory parameters for ÷ English consonants (in ARPAbet)

		PLACE OF ARTICULATION													
MANNER OF ARTICULATION		bilabial		labio- dental		inter- dental		alveolar		palatal		velar		glottal	
	stop	р	b					t	d			k	g	q	$\left \right>$
	fric.			f	V	th	dh	S	Z	sh	zh			h	
	affric.									ch	jh				
	nasal		m						n				ng		\mathbf{X}
	approx		W						l/r		У				\mathbf{X}
	flap							dx					\mathbf{X}		

VOICING: voiceless

voiced

1/5/07 Table from Jennifer Venditt!i

+ Vowels

+ Vowels

Characterized by "formants": Bands of energy

Each vowel has 2 characteristic pitches

- Iower is 1st formant
- higher is 2nd formant

+ [iy] vs. [uw]

Figure from Jennifer Venditti, from a lecture given by Rochelle Newma

American English Vowel Space + HIGH iy UW ix uh ih UX Ov 30 6 ax FRONT BACK **A N** eh ٥٥ $\mathbf{Q}_{\mathbf{L}}$ ae aa LOW

Figure from Jennifer Venditti

+ More phonetic structure

Syllables

Composed of vowels and consonants. Not well defined. Something like a "vowel nucleus with some of its surrounding consonants".

+ More phonetic structure

Stress

- Some syllables have more energy than others
- Stressed syllables versus unstressed syllables
- (an) 'INsult vs. (to) in'SULT
- (an) 'OBject vs. (to) ob'JECT
- Simple model: every multi-syllabic word has one syllable with:
 - "primary stress"
 - We can represent by using the number "1" on the vowel (and an implicit unmarking on the other vowels)
 - "table": t ey1 b ax l
 - "machine: m ax sh iy1 n
 - Also possible: "secondary stress", marked with a "2"
 - ih-2 n f axr m ey-1 sh ax n
 - Third category: reduced: schwa:

ax

+ Multi syllable words

+ She came back and started again

SH-IY-K-EY-M-B-AE-K-AX-N-D-S-T-AA-R-T-DX-IX-D-AX-G-EH-N

- 3. closure for K in came
- 4. burst of aspiration for K
- 5. EY vowel; faint 1100 Hz formant is nasalization
- 8. ae; note upward transitions after bilabial stop at beginning
- 9. note F2 and F3 coming together for "K"
- 10. D is lost between N and S

From Ladefoged "A Course in Phonetics"

+ ASR components

- Feature Extraction, MFCCs, start of AM
- HMMs, Forward, Viterbi,
- Baum-Welch (Forward-Backward)
- Acoustic Modeling and GMMs
- N-grams and Language Modeling
- Search and Advanced Decoding
- Dealing with Variation

+ Acoustic Phonetics

- Waves, sound waves, and spectra
 - (Informally! We'll see it with more math when we do feature extraction)
- Speech waveforms
- F0, pitch, intensity
- Spectra
 - Spectrograms
 - Formants
 - Reading spectrograms

Resources: dictionaries and phonetically-labeled corpora

- Zero is normal air pressure,
- negative is rarefaction
- X axis: time: .03875 seconds

- Frequency: repetitions/second of a wave
- Above vowel has 10 reps in .03875 secs
- So freq is 10/.03875 = 258 Hz
- This is speed that vocal folds move, hence voicing
- Each peak corresponds to an opening of the vocal folds
- The frequency of the complex wave is called the fundamental frequency of the wave or F0

+ Waves have different frequencies

+ Complex waves: Adding a 100 Hz and 1000 Hz wave together

+ Spectral characteristics of vowels

- Any body of air will vibrate in a way that depends on its size and shape of its container
 - Air in vocal tract is set in vibration by action of vocal cords.
 - Every time the vocal cords open and close, pulse of air from the lungs, acting like sharp taps on air in vocal tract
 - Setting resonating cavities into vibration so produce a number of different frequencies.
 - Vocal tract as "amplifier"; amplifies different frequencies

Formants are result of different shapes of vocal tract.

+ Again: why is a speech sound wave composed of these peaks?

Articulatory facts:

- The vocal cord vibrations create harmonics
- The mouth is an amplifier
- Depending on shape of mouth, some harmonics are amplified more than others

+ How to read spectrograms

- bab: closure of lips lowers all formants: so rapid increase in all formants at beginning of "bab"
- **dad**: first formant increases, but F2 and F3 slight fall
- gag: F2 and F3 come together: this is a characteristic of velars. Formant transitions take longer in velars than in alveolars or labials

+ Front End Processing

- To go from a continuous analog signal to a tractable number of values that represent the features most important to distinguishing speech sounds
- Multiple signal processing algorithms in a sequence to foreground important distinctions and background unimportant ones
- Ending up with a structure that is usable in a HMM model

+ Digitizing Speech

Analog-to-digital conversion

- Or A-D conversion.
- Two steps
 - Sampling
 - Quantization

+ Sampling

- Measuring amplitude of a signal at time *t*
- The sample rate needs to have at least two samples for each cycle
 - One for the positive, and one for the negative half of each cycle
 - More than two samples per cycle is ok
 - Less than two samples will cause frequencies to be missed
- So the maximum frequency that can be measured is one that is half the sampling rate.
- The maximum frequency for a given sampling rate called Nyquist frequency

If measure at green dots, will see a lower frequency wave and miss the correct higher frequency one!

+ Sampling

Original signal in red:

+ Sampling

- In practice we use the following sample rates
 - 16,000 Hz (samples/sec), for microphones, "wideband"
 - 8,000 Hz (samples/sec) Telephone
- Why?
 - Need at least 2 samples per cycle
 - Max measurable frequency is half the sampling rate
 - Human speech < 10KHz, so need max 20K
 - Telephone is filtered at 4K, so 8K is enough.

+ Quantization

- Quantization
 - Representing real value of each amplitude as integer
 - 8-bit (-128 to 127) or 16-bit (-32768 to 32767)
- Formats:
 - 16 bit PCM
 - 8 bit mu-law; log compression
- Byte order
 - LSB (Intel) vs. MSB (Sun, Apple)
- Headers:
 - Raw (no header)
 - Microsoft wav
 - Sun .au

+ WAV format

(Open a .wav form in a text editor and you will see this)

+ Manipulating audio

- Nice sound manipulation tool: sox.
 - change sampling rate
 - convert speech formats
 - Check out where in Kaldi sox is used

+ MFCC

- Mel-Frequency Cepstral Coefficient (MFCC)
 - Most widely used spectral representation in ASR

Pre-Emphasis

- Pre-emphasis: boosting the energy in the high frequencies
- Q: Why do this?
- A: The spectrum for voiced segments has more energy at lower frequencies than higher frequencies.
 - This is called spectral tilt
 - Spectral tilt is caused by the nature of the glottal pulse
 - Boosting high-frequency energy gives more info to Acoustic Model
 - Improves phone recognition performance

More energy at lower frequencies than higher frequencies

+ Example of pre-emphasis

Before and after pre-emphasis

Spectral slice from the vowel [aa]

Windowing: "Observations" are successive overlapping frames

Slide from Bryan Pellom

+ Windowing

Why divide speech signal into successive overlapping frames?

Speech is not a stationary signal; we want information about a small enough region that the spectral information is a useful cue.

Frames

- Frame size: typically, 10-25ms
- Frame shift: the length of time between successive frames, typically, 5-10ms

+ Discrete Fourier Transform

Input:

- Windowed signal x[n]...x[m]
- Output:
 - For each of N discrete frequency bands
 - A complex number X[k] representing magnitude and phase of that frequency component in the original signal
- Discrete Fourier Transform (DFT)

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j2\frac{\pi}{N}kn}$$

- Standard algorithm for computing DFT:
 - Fast Fourier Transform (FFT) with complexity N*log(N)
 - In general, choose N=512 or 1024

Discrete Fourier Transform computing a spectrum

A 25 ms Hamming-windowed signal from [iy]

And its spectrum as computed by DFT (plus other smoothing)

+ Mel-scale

- Human hearing is not equally sensitive to all frequency bands
- Less sensitive at higher frequencies, roughly > 1000 Hz

I.e. human perception of frequency is non-linear:

+ Mel-scale

- A mel is a unit of pitch
 - Definition:
 - Pairs of sounds perceptually equidistant in pitch
 - Are separated by an equal number of mels:
- Mel-scale is approximately linear below 1 kHz and logarithmic above 1 kHz

Definition:

$$Mel(f) = 2595 \log_{10} \left(1 + \frac{f}{700}\right)$$

Mel Filter Bank Processing

Mel Filter bank

- Uniformly spaced before 1 kHz
- Iogarithmic scale after 1 kHz

Mel-filter Bank Processing

- Apply the bank of filters according Mel scale to the spectrum
- Each filter output is the sum of its filtered spectral components

+ Log energy computation

 Compute the logarithm of the square magnitude of the output of Mel-filter bank

+ Log energy computation

- Why log energy?
- Logarithm compresses dynamic range of values
 - Human response to signal level is logarithmic

 Makes frequency estimates less sensitive to slight variations in input (power variation due to speaker's mouth moving closer to mike)

+ The Cepstrum

- One way to think about this
 - Separating the source and filter
 - Speech waveform is created by
 - A glottal source waveform
 - Passes through a vocal tract which because of its shape has a particular filtering characteristic

Articulatory facts:

- The vocal cord vibrations create harmonics
- The mouth is an amplifier
- Depending on shape of oral cavity, some harmonics are amplified more than others

+ We care about the filter not the source

Most characteristics of the source

- **F**0
- Details of glottal pulse
- Don't matter for phone detection
- What we care about is the filter
 - The exact position of the articulators in the oral tract
- So we want a way to separate these
 - And use only the filter function

+ The Cepstrum

Mel Frequency cepstrum

- The cepstrum requires Fourier analysis
 from frequency space back to time
- So we actually apply inverse DFT

$$y_t[k] = \sum_{m=1}^{M} \log(|Y_t(m)|) \cos(k(m-0.5)\frac{\pi}{M}), \text{ k=0,...,J}$$

 Details for signal processing gurus: Since the log power spectrum is real and symmetric, inverse DFT reduces to a Discrete Cosine Transform (DCT)

- Another advantage of the Cepstrum
 - DCT produces highly uncorrelated features
 - We'll see when we get to acoustic modelling that these will be much easier to model than the spectrum
 - Simply modelled by linear combinations of Gaussian density functions with diagonal covariance matrices
 - In general we'll just use the first 12 cepstral coefficients (we don't want the later ones which have the F0 spike)

+ Dynamic Cepstral Coefficient

The cepstral coefficients do not capture energy

So we add an energy feature

$$Energy = \sum_{t=t_1}^{t_2} x^2[t]$$

- Also, we know that speech signal is not constant (slope of formants, change from stop burst to release).
- So we want to add the changes in features (the slopes).
 - We call these delta features
 - We also add double-delta acceleration features

Delta and double-delta

Summary: Typical MFCC features

- Window size: 25ms
- Window shift: 10ms
- Pre-emphasis coefficient: 0.97
- MFCC:
 - 12 MFCC (mel frequency cepstral coefficients)
 - 1 energy feature
 - 12 delta MFCC features
 - 12 double-delta MFCC features
 - 1 delta energy feature
 - 1 double-delta energy feature
- Total 39-dimensional features

+ Why is MFCC so popular?

- Efficient to compute
- Incorporates a perceptual Mel frequency scale
- Separates the source and filter
- IDFT(DCT) decorrelates the features
 - Improves diagonal assumption in HMM modeling
- Alternative
 - PLP
- Another look at this
 - http://www.speech.cs.cmu.edu/15-492/slides/03_mfcc.pdf

Problem: how to apply HMM model to continuous observations?

- We have assumed that the output alphabet V has a finite number of symbols
- But spectral feature vectors are real-valued!
- How to deal with real-valued features?
 - Decoding: Given o_t , how to compute $P(o_t|q)$
 - Learning: How to modify EM to deal with real-valued features

+ Vector Quantization

- Create a training set of feature vectors
- Cluster them into a small number of classes
- Represent each class by a discrete symbol
- For each class v_k, we can compute the probability that it is generated by a given HMM state using Baum-Welch

+ VQ requirements

A distance metric or distortion metric

- Specifies how similar two vectors are
- Used:
 - to build clusters
 - To find prototype vector for cluster
 - And to compare incoming vector to prototypes

+ Front End

1/23/20

73

+ Embedded Training

