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Thanks to Dan Jurafsky for these slides




+ Phonetics |.

m Phonemes and the ARPAbet

= An alphabet for transcribing American English phonetic
sounds.

= Articulatory Phonetics

= How speech sounds are made by articulators (moving
organs) in mouth.

m Language resources and WFSTs

1/5/07



+ From speech to phonemes |.

m Phonemes are the minimal set of sounds to distinguish
meaning

= Pat — bat, tab — dab,
= Fat — chat — that
= Pack — pick — puck -- pike

m Uses the alphabet, but not isomorphic to spelling (especially in
English)

m Standard used in speech recognition is the “ARPABET”
= 46 total (17 vowels, 29 consonants) + 13 “extras
= In practice there are many variations, but all are close
m http://www.stanford.edu/class/cs224s/arpabet.html

= NOTE: These are for English only—each language has its own set of
phonemes

Thanks to Dan Jurafsky for these slides


http://www.stanford.edu/class/cs224s/arpabet.html

ARPAbet Vowels

b d ARPA b d ARPA

1 |bead 1y 9 bode OW
2 |bid ih 10 booed |uw
3 |bayed ey 11 bud ah
4 | bed ch 12 bird er
5 |bad ac 13 bide ay
6 |[bod(y) aa 14 bowed |aw
7 |bawd a0 15 Boyd |oy
8 | Budd(hist) |uh

Note: Many speakers pronounce Buddhist with the vowel uw as in booed,
So for them [uh] is instead the vowel in “put” or “book”

1o Sounds from Ladefoged



+ The Speech Chain (Denes and Pinson)

Feedback
link
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‘ Sound waves nerves :
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HEARER
SPEAKER Articulatory Phonetics

1/5/07



+ George Miller figure
Recognizing speech

Separating the filter from the source

m Articulation and Resonance
= Shape of vocal tract

mPhonation

m Airstream sets vocal folds in
motion. Vibration of vocal folds
produces sounds.

= Respiration:

= We (normally) speak while
breathing out. Respiration
provides airflow. “Pulmonic
egressive airstream”

Output sound ~=======~=~-
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+ Phonation: Larynx and Vocal Folds |.

m The Larynx (voice box)
= A structure made of cartilage and muscle

= Located above the trachea (windpipe) and below the pharynx
(throat)

= Contains the vocal folds
= (adjective for larynx: laryngeal)

= Vocal Folds (older term: vocal cords)
= Two bands of muscle and tissue in the larynx
= Can be set in motion to produce sound (voicing)

1/5/07

Text from slides by Sharon Rose UCSD LING 111



*+Voicing: I.

1/5/07
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N
N

= R‘f . Air comes up from lungs
8
- Forces its way through vocal folds,

pushing open (2,3,4)
77 § | - This causes air pressure in glottis to fall,

since:

~—1 - when gas runs through constricted
2 passage, its velocity increases
(Venturi tube effect)

' - this increase in velocity results in a

=)\ drop in pressure (Bernoulli
@ /;"a ~\ principle)

- Because of drop in pressure, vocal

f:..-?ﬁ)? cords snap together again (6-10)
10 !
I

A - Single cycle: ~1/100 of a second.

Figure & text from John Coleman’s web site



+ Voicelessness |.

= \When vocal cords are open, air passes through
unobstructed

m Voiceless sounds: p/t/k/s/f/sh/th/ch

m If the air moves very quickly, the turbulence causes
a different kind of phonation: whisper

1/5/07



+ Articulators and resonance

Alveolar Ridge Hard Palate

o Velum (Soft Palate)
Nasal Cavity /

Uvula
NostnlJ

~aN \\\:
Ot a .- “0“! back
L 3 Tongue
1ps

%' Epiglottis
Teeth /

Larynx

7

From Mark Liberman’s Web Site, from Language Files (7th ed)

xuhzeud
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+ Consonants and Vowels |.

m Consonants: phonetically, sounds with audible noise
produced by a constriction

m Vowels: phonetically, sounds with no audible noise
produced by a constriction

1/5/07 Text adapted from John Coleme



+ Place of articulation I.

m Coronal (tip of the tongue)
= Dental: th/dh

= Alveolar: t/d/s/z/| alveolar poST- lveolar/ pala’ral
= Post: sh/zhly dentg ‘
\b ‘ velar
{
m Dorsal (back of the tongue) uvular
= Velar: k/g/ng labial
. Lios pharyngeal
= Bilabial: p//b/m ,.
= Labiodental: /v laryngeal/
 \ glottal
= Glottis: Ve

= Glotal stop, as in Cockney
“bottle”

175107 Figure thanks to Jennifer Venditti



+ Manner of Articulation

m Stop: complete closure of articulators, so no air
escapes through mouth

= Oral stop: palate is raised, no air escapes
through nose. Air pressure builds up behind
closure, explodes when released

mp,tkbdg

= Nasal stop: oral closure, but palate is lowered,
air escapes through nose.

m M, N, ng

m Fricative

m Close approximation of two articulators,
resulting in turbulent airflow between them

mf v s, z th, dh
m Affricate
m Approximant

m Tap or flap

1/5/07

Oral

Nasal




Articulatory parameters for

English consonants (in ARPAbet)

1/5/07

Table from Jennifer Venditt!i

PLACE OF ARTICULATION

% bilabial | labio- inter- alveolar | palatal | velar glottal
ll:l dental dental
<_(‘ stop p b t d k |g | q
D
S | fric. f |[v |th |[dh |s |z |sh |zh h
-
(a4 . 5
< | affric. ch |jh
(T
O | nasal m n ng
(a4
w
—Z | approx w I/r y
Z
= fla d
=P :

VOICING: | voiceless voiced



+ Vowels

Gy S
S

Q_ Q

Wl Wl

(C’Fig. from Eric

Peaks are the
Formants .

111111111111111111



+ Vowels |.
m Characterized by “formants”. Bands of energy

= Each vowel has 2 characteristic pitches

m lower is 1st formant
m higher is 2nd formant

4000

3000

2000

1000

Hz

4000

3000

2000

i Wwﬁw
i +W.‘" MW |

1000 —» il

Hz
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Figure from Jennifer Venditti, from a lecture given by Rochelle Newma
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+ American English Vowel Space |.

HIGH
ly uw
ih ix ux uhf
. |
AN 3
FRONT 3 BACK
eh . g/ 4o
Q@
ae aa
LOW

1/5/07 Figure from Jennifer Venditti



+ More phonetic structure |.

m Syllables

= Composed of vowels and consonants. Not well
defined. Something like a “vowel nucleus with
some of its surrounding consonants”.

o o G
Onset Rime Onset Rime Rime
| N ~ T <N

h Nucleus Coda o r Nucleus Coda Nucleus Coda

| | | | | —~

: Z
ac m 1y n eh g

1/5/07



+ More phonetic structure |.

m Stress
= Some syllables have more energy than others
= Stressed syllables versus unstressed syllables
= (an) ‘INsult vs. (to) in"SULT
= (an) ‘OBject vs. (to) ob’JECT

0 Sirﬂple model: every multi-syllabic word has one syllable
with:
= “primary stress”

m We can represent by using the number “1” on the vowel (and an
implicit unmarking on the other vowels)

m “table™ tey1baxl
® “‘machine: max shiy1ln
= Also possible: “secondary stress”, marked with a “2”
m ih-2nfaxrmey-1shaxn
= Third category: reduced: schwa:
m ax

1/5/07



+ Multi syllable words .

e N

2 0 1 0

|

Sex  of Bw S o S
. | N . N
Nucleus Coda £ Nucleus Coda D Nucleus slh Nucleus Coda

ih n ax [ €y ax n

1/5/07



+ She came back and started again I

SH-IY-K-EY-M-B-AE-K-AX-N-D-S-T-AA-R-T-DX-IX-D-AX-G-EH-N

FWWTFT

) 12 l| 14 |IEJIG|17{18|19| 20 |21
|

ik T " ‘ﬂ."t[',g. 1
3000 "l< v' i i b ! ~|“"':w I k‘;;( | T i
L. AL TN T l | 8 W I
1000 ‘ HIMIH i ';l |

o L 1 -WWHW A m'-
s so . 1000 15'00 2000 ms

1. SH- lots of high-freq energy 6. bilabial nasal

5000

4000

3. closure for K in came 8. ae; note upward transitions after bilabial
o stop at beginning
4. burst of aspiration for K
_ 9. note F2 and F3 coming together for “K”
5. EY vowel:faint 1100 Hz formant

iS nasalization 10. D is lost between N and S

© MM Consulting 2015 From Ladefoged “A Course in Phorfétics®



+ Speech Recognition Architecture

cepstral
feature
extraction

Gaussian
Acoustic Model

N-gram
language
model

: Viterbi Decoder /

\\\\ --if music be the food of love...

A

W =argmax P(O |[W)P(W)

Thanks to Dan Jurafsky for these slides
WeEL




+ ASR components

m Feature Extraction, MFCCs, start of AM
= HMMs, Forward, Viterbi,

= Baum-Welch (Forward-Backward)

= Acoustic Modeling and GMMs

= N-grams and Language Modeling

m Search and Advanced Decoding

m Dealing with Variation



+ Acoustic Phonetics |.

= \Waves, sound waves, and spectra

= (Informally! We'll see it with more math when we do feature
extraction)

m Speech waveforms
m FO, pitch, intensity

m Spectra

m Spectrograms
= Formants
» Reading spectrograms

m Resources: dictionaries and phonetically-labeled corpora



+ Speech sound waves I.

0.02283

(=]

N A

S S A

WYY YW VWY

VW AW W VY

-0.01697
0

Time (s)

m Positive is compression
m Zero is normal air pressure,
m negative is rarefaction

0.03875

m X axis: time: .03875 seconds

1/5/07



+ Fundamental frequency |.

m Waveform of the vowel [iy]

0.02283

0][\\Anv/\ﬂjﬂ’\ﬂ/\ﬂﬁ/\f\@/\ﬂ/\/\./\ﬂ/\ﬂ/\ﬂ
A YA B YA VAT ATARYAT AT A YA VA" A VA

-0.01697
0 0.03875
Time (s

m Frequency: repetitions/second of a wave

m Above vowel has 10 reps in .03875 secs

m So freqis 10/.03875 = 258 Hz

m This is speed that vocal folds move, hence voicing

m Each peak corresponds to an opening of the vocal folds

m The frequency of the complex wave is called the fundamental
frequency of the wave or FO



+ Waves have different frequencies |.

LA

0.02

||

T

1000 Hz




+ Complex waves: Adding a 100 Hz and |.
1000 Hz wave together

0.99

—0.9654

0 0.05
Time (s)

1/5/07



+ Spectral characteristics of vowels

= Any body of air will vibrate in a way that depends on
its size and shape of its container

= Air in vocal tract is set in vibration by action of vocal cords.

m Every time the vocal cords open and close, pulse of air from the
lungs, acting like sharp taps on air in vocal tract

m Setting resonating cavities into vibration so produce a number of
different frequencies.

= Vocal tract as "amplifier"; amplifies different frequencies

m Formants are result of different shapes of vocal tract.

4000

3000

o

2000

1000

]
[i]

Hz

1/5/07



+ Again: why is a speech sound wave |.
composed of these peaks?

= Articulatory facts:
m The vocal cord vibrations create harmonics
= The mouth is an amplifier

= Depending on shape of mouth, some harmonics are
amplified more than others

1/5/07



+ How to read spectrograms

4000

3000

2000

1000

Hz

m bab: closure of lips lowers all formants: so rapid increase in all
formants at beginning of "bab”

m dad: first formant increases, but F2 and F3 slight fall

m gag: F2 and F3 come together: this is a characteristic of velars.
Formant transitions take longer in velars than in alveolars or labials

1/5/07 From Ladefoged “A Course in Phol



+Front End Processing |.

= To go from a continuous analog signal to a tractable
number of values that represent the features most
important to distinguishing speech sounds

= Multiple signal processing algorithms in a sequence
to foreground important distinctions and background
unimportant ones

= Ending up with a structure that is usable in a HMM
model

Thanks to Dan Jurafsky for these slides



+ Digitizing Speech

= Analog-to-digital conversion

m Or A-D conversion.

= Two steps
= Sampling
= Quantization

1/5/07

) =&~

Continuous Microphone

Sound
pressure
wave

Thanks to Bryan Pellom for this slide!

Discrete
Digital
Samples

.s'[‘n +1) S (n)




Sampling .

» Measuring amplitude of a signal at time ¢

* The sample rate needs to have at least two
samples for each cycle

* One for the positive, and one for the negative half of
each cycle

* More than two samples per cycle is ok

* Less than two samples will cause frequencies to be
missed

* So the maximum frequency that can be
measured is one that is half the sampling rate.

* The maximum frequency for a given sampling
rate called Nyquist frequency

1/5/07



+ Sampling

1/5/07

If measure at green
dots, will see a
lower frequency
wave and miss the
correct higher
frequency onel!

TR AT )

it i
_0_5.} I | [ |
_J.L.'.i...“u }.:”lflLLL|Li|||l[|L|.[IJJJ]llll{!!

Original signal in red:

Tt

Q 20 40 éa ea 100 120 140 180 1eq 200

TR

Q 20 40 éa ea 100 120 140 180 1eq 200



Sampling .

 In practice we use the following sample rates

* 16,000 Hz (samples/sec), for microphones,
“wideband”

* 8,000 Hz (samples/sec) Telephone
 Why?
* Need at least 2 samples per cycle

*  Max measurable frequency is half the
sampling rate

 Human speech < 10KHz, so need max 20K
» Telephone is filtered at 4K, so 8K is enough.

1/5/07



+ Quantization

m Quantization

= Representing real value of each amplitude as integer
= 8-bit (-128 to 127) or 16-bit (-32768 to 32767)

m Formats:
= 16 bit PCM
= 8 bit mu-law; log compression

m Byte order

40 byte
= LSB (Intel) vs. MSB (Sun, Apple) header
m Headers:
= Raw (no header)
= Microsoft wav —

m Sun .au

1/5/07



+ WAV format

lR III}WV‘LtIlllllllllllldlatlunu
length Format chunk \
data length (16) / bytes/second \ Data length
Compression type bytes/sample

# channels bits/channel

Sampling rate

(Open a .wav form in a text editor and you will see this)

1/5/07



+ Manipulating audio

= Nice sound manipulation tool: sox.
m change sampling rate

= convert speech formats
m Check out where in Kaldi sox is used



+ MFCC |.

m Mel-Frequency Cepstral Coefficient (MFCC)

= Most widely used spectral representation in ASR

Speech signal X.(k) Mel
(1) Pre-emphasis DFT filter-bank
Window YT (m)
energy L09(| |2)
( Vi (J €, 1 ét
Y, =1 % Vi (J) ’Az{et} «~— |derivatives v, (]) Yr’(m)
ATy, ()i A%{e,} IDFT

MEFCC



Pre-Emphasis |.

m Pre-emphasis: boosting the energy in the high
frequencies

® Q: Why do this?

m A: The spectrum for voiced segments has more

*energy at lower frequencies than higher
frequencies.

This is called spectral tilt
Spectral tilt is caused by the nature of the glottal pulse

m Boosting high-frequency energy gives more info
to Acoustic Model

Improves phone recognition performance



+ More energy at lower frequencies than
higher frequencies

® OO0 : WaveSurfer #3
= IE B[ -]

- Tad_004.wav [Configuration: Spectrogram]

20 -
18 -
16
14 -

16k Microphone
\

"“NN‘H 8kTeIephome Tl

' Wil

w s B s b

I'-I'I'.I'I"I'I'I'l'il'-l'l'll"l'l

\l-—-—-h—bﬂ-.-'—-‘-‘l—t——-”»-d—*b—-b—-l-—-“ +—

Spectrogram - 01.837 16427Hz -83.97dB

Thanks to Dan Jurafsky for these slides



Sound pressure level (dB/Hz)

+ Example of pre-emphasis

m Before and after pre-emphasis
= Spectral slice from the vowel [aa]

204
0+ . }:
2 || \
3
—40- I ‘t
l
0
Frequency (Hz)

22030

Sound pressure level (dB/Hz)

20- :'..‘\:1 !’ I,’}

"""
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+MFCC

Speech signal x(n) X (k) Mel
() " Pre-emphasis x,(n)' " DFT Glter-bank
Window Yf(m)
energy Log(| |?)
r Vi (] . €, 1 er
Y: = %v, U )’Aze’} -+ |derivatives|| y, () Y,"(m)
kA v, (7)iA e,}J IDFT

MFCC



+ Windowing: "Observations™ are
successive overlapping frames

000000

Slide from Bryan Pellom



+ Windowing |.

= \Why divide speech signal into successive
overlapping frames?

= Speech is not a stationary signal; we want information about
a small enough region that the spectral information is a useful

* cue.

= Frames
= Frame size: typically, 10-25ms

= Frame shift: the length of time between successive frames,
typically, 5-10ms



+ MFCC

yr:%

Speech signal

x(n)

A

Pre-emphasis

“—1 |derivatives

" DFT
Window
energy
et
¥y, (/)
’ IDFT

%) Mel
filter-bank
Y (m)
Log( |9
Y,’(m)

MFCC



+ Discrete Fourier Transform |.

= |nput:
= Windowed signal x[n]...x[m]

= Output:
= For each of N discrete frequency bands

= A complex number X[k] representing magnitude and phase of that
frequency component in the original signal

m Discrete Fourier Transform (DFT)
N-—1

X[k| = Z z[n]e—I2Fkn

n=>0

= Standard algorithm for computing DFT:
= Fast Fourier Transform (FFT) with complexity N*log(N)
= In general, choose N=512 or 1024



+ Discrete Fourier Transform |.
computing a spectrum

mA 25 ms Hamming-windowed signal from [iy]

= And its spectrum as computed by DFT (plus other smoothing)

0.04414

20

| (dB/Hz)

leve

nd pressur

—20

-0.04121
0.0141752 0.039295 0 8000

Time (s) Frequency (Hz)



+MFCC

Speech signal ‘Xr(k Mel
() " Pre-emphasis " DFT > filter-bank
YV (122)
Window ’ A
energy L09(| |2)
r Vi (] €, 1 €,
y: :{ A Vi (J) A et} F —— derivatives -yt (]) y’r’(m)
N, ()pa%e ) IDFT

MFCC



+ Mel-scale |.
® Human hearing is not equally sensitive to all
frequency bands

m Less sensitive at higher frequencies, roughly >
1000 Hz

*I.e. human perception of frequency is non-linear:
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+ Mel-scale |.

= A mel is a unit of pitch

= Definition:
m Pairs of sounds perceptually equidistant in pitch
m Are separated by an equal number of mels:

= Mel-scale is approximately linear below 1 kHz and
logarithmic above 1 kHz

m Definition:

Mel(f) = 259

V.«"'(
[—
-
U<
p—d
(-
A
p—t



+ Mel Filter Bank Processing |.

m Mel Filter bank

= Uniformly spaced before 1 kHz
= |logarithmic scale after 1 kHz

3
=
a
<
Cs RS -
1 K G 4 1000 2000 3000 " 4000
NG R Freguency (Hz) i
Y ® Y ”
A -
4 A yad
Mel Spectrum my Mo M




+ Mel-filter Bank Processing |.

= Apply the bank of filters according Mel scale to the

spectrum
m Each filter output is the sum of its filtered spectral
components
i — Y (1
B I/\ : _;__,0)@ )
Ime aomain signa spectrum
[\ B — Y I::> );(2)
DFT ) A far @ I A . o
V
X (k) i |
L i |
n=0,1,..L-1 k=0,1,.7%-1 |

v




+MFCC

Speech signal ‘Xr(k) Mel

() " Pre-emphasis " DFT Glter-bank

YV (12)

Window ’ A

energy Log(| |2)
r Vi (] €, 1 er
yo=1 Ap: Uliate) @ derivatives v, () Y, '(m)

Ay, ()ate} IDFT

MFCC



+ Log energy computation |.

m Compute the logarithm of the square magnitude of the
output of Mel-filter bank

Mel-filter output
spectral vector Y,(m) ‘ | | | | | | Filter index(m)
>
0 ] M-1
Log( ) |
Log-spectral vector Y’ (m)

| | ‘ | | | | | | | Filter index(m)
0 1 Ml "




+ Log energy computation |.

= Why log energy?

m Logarithm compresses dynamic range of values
= Human response to signal level is logarithmic

= Humans are less sensitive to slight differences in amplitude at high
* amplitudes than low amplitudes

m Makes frequency estimates less sensitive to slight
variations in input (power variation due to speaker’s
mouth moving closer to mike)



+MFCC

Speech signal ‘Xr(k) Mel
() " Pre-emphasis " DFT Glter-bank
Window ’ Yr(m)
energy Log(| |2)
r Vi (] €, 1 er
yo=1 Ap: Uliate) @ derivatives v, () Y, '(m)
N, ()pa%e ) T{IDFT
; MFC(Q




+ The Cepstrum |.

= One way to think about this
= Separating the source and filter

= Speech waveform is created by
m A glottal source waveform

m Passes through a vocal tract which because of its shape has a particular
filtering characteristic

= Articulatory facts:
The vocal cord vibrations create harmonics
= The mouth is an amplifier

= Depending on shape of oral cavity, some harmonics are amplified
more than others




+ We care about the filter not the source |.

m Most characteristics of the source

m FO
m Details of glottal pulse

= Don’t matter for phone detection

= What we care about is the filter
= The exact position of the articulators in the oral tract

*So we want a way to separate these

= And use only the filter function



+ The Cepstrum
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+ Mel Frequency cepstrum |.

m The cepstrum requires Fourier analysis
= from frequency space back to time

m So we actually apply inverse DFT

M
Zloo Y;(m)|) cos(k(m — 0.5) ”) k=0,...,J

m=1

m Details for signal processing gurus: Since the log
power spectrum is real and symmetric, inverse DFT
reduces to a Discrete Cosine Transform (DCT)



Another advantage of the Cepstruml.

m DCT produces highly uncorrelated features

m We'll see when we get to acoustic modelling that
these will be much easier to model than the
spectrum

s Simply modelled by linear combinations of Gaussian
density functions with diagonal covariance matrices

m In general we’'ll just use the first 12 cepstral
coefficients (we don’t want the later ones which
have the FO spike)



+MFCC

Speech signal ‘Xr(k) Mel
() " Pre-emphasis " DFT filter-bank
Window ’ Yr(m)
energy Log(| [2)
o (Gle
YI :{ A V (J) A et} - derlvatlves -yt (]) y’r’(m)
N, ()pa%e ) —|IDFT
; MFCC




+ Dynamic Cepstral Coefficient

m The cepstral coefficients do not capture energy

%)
L "

Energy = Z_\"’[f]
= So we add an energy feature t=1)

= Also, we know that speech signal is not constant
(slope of formants, change from stop burst to
release).

= S0 we want to add the changes in features (the
slopes).
= We call these delta features
= We also add double-delta acceleration features



+ Delta and double-delta |.

m Derivative: in order to obtain temporal

information
- a n-17 n n+1 n+2 _
] (S 1S (] [ c(t+1)—c(t—1)
o o oo 4lt) = 2
i i i S I — =
MFCC stream y,(j) | = ! | . -
O 1O 9] 12 Frame index . mz:_p me Vin ()
=S > Ay, (J) = 7
N » AV A AV X , =Z_m
quefrency(j) IR IR IR ) ’
o @ @ | e
AMFCC stream Ay, (j) I | ]|
H i
Ol 1O ‘O O Fr(l};)é index 2 mép meAy._ (j)
. Tava” v Ay (J) = 5 m?
quefrency(j) YR YR R0 ) m=—p
o o e |e
A2MFCC stream A2y,(j) ; i | |
Q| 19 [D] |1© Frame index




+ Summary: Typical MFCC features |.

= Window size: 25ms

= Window shift: 10ms

m Pre-emphasis coefficient: 0.97
= MFCC:

12 MFCC (mel frequency cepstral coefficients)
1 energy feature

12 delta MFCC features

12 double-delta MFCC features

1 delta energy feature

1 double-delta energy feature

m Total 39-dimensional features



+ Why is MFCC so popular?

m Efficient to compute
m Incorporates a perceptual Mel frequency scale
m Separates the source and filter

m IDFT(DCT) decorrelates the features

= Improves diagonal assumption in HMM modeling

m Alternative
= PLP

m Another look at this
m http://www.speech.cs.cmu.edu/15-492/slides/03 mfcc.pdf



http://www.speech.cs.cmu.edu/15-492/slides/03_mfcc.pdf

+ Problem: how to apply HMM model to |.
continuous observations?

= \We have assumed that the output alphabet V has a finite
number of symbols

= But spectral feature vectors are real-valued!

= How to deal with real-valued features?
= Decoding: Given oy, how to compute P(04|q)
= Learning: How to modify EM to deal with real-valued features



+ Vector Quantization

= Create a training set of feature vectors
m Cluster them into a small number of classes
m Represent each class by a discrete symbol

m For each class v,, we can compute the probability
that it is generated by a given HMM state using
Baum-\Welch



+ VQ requirements |.

m A distance metric or distortion metric
= Specifies how similar two vectors are
= Used:
m to build clusters

m To find prototype vector for cluster
m And to compare incoming vector to prototypes

Codebook of 256

|
= K- | (I 2
K-means, etc 2
Input Feature Vector 4
il [l
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I il

= A clustering algorithm
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Why don’t we do
this now?




+ Front End
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+ Embedded Training
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