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+ Today
n The speech problem

n Units of speech

n Hidden Markov Models

n Phonetic HMMs

n Recognition architecture
n Training
n Decoding
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+ 1985:  First significant breakthrough 
in Speech Recognition
n Hidden Markoff Models

n Mathematical framework
n Ability to model time and spectral variability simultaneously
n Ability to automatically estimate parameters given data
n Not longer need to hand segment into phonemes
n Segmentation and modeling done in one step
n Data driven à Standard scientific procedures
n Empirical!
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+ A Decade of Progress in Speech Recognition
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+ The speech problem
n Continuous-time signal à

n Sequence of discrete entitites

n Sequence of discrete entities

n Or did she  say
n It’s easy to wreck a nice beach?
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ih t S iy z iy t u r eh k o g n iy z s p iy ch

It’s easy to recognize speech



+ Challenge:  Variability
n Linguistic

n Can say many different things
n Phonetics, phonology, syntax, semantic, discourse

n Speaker
n Physical characteristics of speaker
n Co-articulation (mouth has to transition between sounds
n Native language/dialect

n Channel
n Background noise
n Transmission channel (microphone/telephone quality)
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+ A look at the speech sounds
n Grey whales
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Words Grey Whales meow
Phonemes g r ey w ey l z ?

Triphones - g r g r ey r ey w ey w y w ey l ey l z l z -



+ Contextual variability
n Ey in grey, ey in whales
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+ The Noisy Channel Model

n Search through space of all possible sentences.

n Pick the one that is most probable given the waveform.
Thanks to Dan Jurafsky for these slides 



+ Design Intuition
n Build a statistical model of the speech sounds-to-words

n Collect lots and lots of speech, and transcribe all the words.
n Train the model on the labeled speech

n Create a “search space” of all the possible word combinations
n Write a grammar
n “Learn” likely sequences from lots of text

n Paradigm: Supervised Machine Learning + Search
n Use the model to find the best sequence of words given the input 

sounds

© MM Consulting 2015 2/10/15
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+ Speech Architecture meets Noisy 
Channel

€ 

ˆ W = argmax
W ∈L

P(O |W )P(W )

Thanks to Dan Jurafsky for these slides 

likelihood prior



+ The Noisy Channel Model (Preview)

n What is the most likely sentence out of all sentences 
in the language L given some acoustic input O?

n Treat acoustic input O as sequence of individual 
observations 
n O = o1,o2,o3,…,ot

n Define a sentence as a sequence of words:
n W = w1,w2,w3,…,wn

Thanks to Dan Jurafsky for these slides 



+ Noisy Channel Model
n Probabilistic implication: Pick the highest prob S:

n We can use Bayes rule to rewrite this:

n Since denominator is the same for each candidate 
sentence W, we can ignore it for the argmax:

Thanks to Dan Jurafsky for these slides 

€ 

ˆ W = argmax
W ∈L

P(W | O)

€ 

ˆ W = argmax
W ∈L

P(O |W )P(W )
€ 

ˆ W = argmax
W ∈L

P(O |W )P(W )
P(O)



+ The noisy channel model
n Ignoring the denominator leaves us with two factors: 

P(Source) and P(Signal|Source)

Thanks to Dan Jurafsky for these slides 



+ Speech Recognition Architecture

Thanks to Dan Jurafsky for these slides 



+ How is this connected to language?
n The Dictionary

n Hand built knowledge source 
that ties words to sounds

n Sequence of words à
n sequence of phonemes à

n HMM states 
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+ From Phonetics to the Dictionary
n Dictionaries spell out the phonemes for each word

n Variations in pronunciation come from 
n Slight differences in shape of the vocal tract
n Slight variations in articulation (accents)
n Co-articulation with neighboring phonemes 
n Predictable variation from the position of phoneme in the word 

(e.g the “ps” in “tap” and “pat” are different)

n Some words have multiple pronunciations
>RECORD     R-EH-K-AXR-D      R-IX-K-AO-R-D

1/10/11© MM Consulting 2011
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+ Base + Domain Dictionary

1/10/11© MM Consulting 2011
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>ABOUND AX-B-AW-N-D
>ABOUNDED AX-B-AW-N-D-IX-D
>ABOUNDING AX-B-AW-N-D-IX-NX
>ABOUNDS AX-B-AW-N-D-Z
>ABOUT AX-B-AW-T
>ABOUT'S AX-B-AW-T-S
>ABOVE AX-B-AH-V
>ABOVEBOARD AX-B-AH-V-B-AO-R-D
>ABPLANALP AE-B-P-L-AX-N-AE-L-P
>ABRA AA-B-R-AX
>ABRACADABRA AE-B-R-AX-K-AX-D-AE-B-R-AX
>ABRAHAM EY-B-R-AX-HH-AE-M

. . .

>AIRFORCE EI-R-F-OW-R-S
>APPROACHING AX-P-R-OW-CH-IX-N 

AX-P-R-OW-CH-IX-NX 
P-R-OW-CH-IX-N

>ARAC EY-R-AE-K
>ATIS EY-T-IX-S
>AZIMUTH AE-Z-M-EH-TH
>BLACKCAT B-L-AE-K-AE-T
>CAIRNS K-AE-R-IX-N-Z



+ Architecture: Five easy pieces
n Feature extraction

n HMMs,  Lexicons, and Pronunciation

n Acoustic Modeling

n Language Modeling

n Decoding

Thanks to Dan Jurafsky for these slides 



+ Speech Recognition Architecture

Thanks to Dan Jurafsky for these slides 



+ Speech Recognition Pipeline
Feature 

Extraction

Segmentation

Decoding

Confidence
Estimation

Words
Times
Scores
Answers

Speech/
non-speech

Acoustic model

Grammar or
language model

Dictionary

Data



+ Speech Recognition Knowledge Sources

5/25/10
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Speech/
non-speech

Acoustic 
model

Grammar or
SLM

Dictionary

Model of speech, pauses, coughs, and other sounds

List of all the words and their pronunciations, the 
“phonetic spelling”

Models the relationship between the sounds and the 
phonemes.  Specific to a language (English or 
Spanish) and a channel (telephony or broadcast)

Grammar: all possible sentences
Statistical language model (SLM):  Captures the 
likelihood of sequences of words

Data Thousands of hours of transcribed speech



+ Front End

1/23/20CS 224S Winter 2007
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Observations

State Sequence



+ Acoustic Modeling Training

Words Nine         night

Phonemes N-AY-N      N-AY-T

Triphones <S>NAY-NAYN-AYN<S> <S>NAY-NAYT-AYT<S>

2/10/15© MM Consulting 2015
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learns the relationship between feature vectors 
and triphones



+ Embedded Training

1/23/20CS 224S Winter 2007
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+ Statistical Language Model (SLM)
n Captures how words are used in a particular domain

n Specific to dialect (“in the hospital” vs. “in hospital”)
n Specific to domain (frequency of different words)
n Disambiguate homophones (“disc” vs. “disk)

n But allows any word order

n Trigram model 
n Probability of a word given the previous two words

1/10/11© MM Consulting 2011
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What is the missing word?
“I love _______”

NOW what is the missing word?
“My favorite TV show was I love _______”



+ Language (or Domain) Model: 
Statistical Grammar

n Word order is guided by statistics

n Data is used to count the likelihood 
a word given the previous
n “in the hospital”
n “the in hospital”
n “the hospital in”

n Creates a lattice that is searched

n Training data must be relevant!

1/10/11© MM Consulting 2011
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Bigram



+ Back to HMMs
n Why Markov model?

n Why Hidden Markov model?
n Output symbols are probabilistic distribution over all labels
n The actual sequence of states for a particular output is “Hidden”
n There is one sequence that is the most probable to generate the 

output symbols
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Markov chain models 
sequences

à Speech is sequential can be modeled 
as a sequence of states specified by 
the dictionary

Transitions in the chain are 
probabilistic

à Probabilities model uncertainly well



+

1/23/20Speech and Language Processing - Jurafsky and Martin       
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n States Q = q1, q2…qN; 

n Observations O= o1, o2…oN; 
n Each observation is a symbol from a vocabulary V = {v1,v2,…vV}

n Transition probabilities
n Transition probability matrix A = {aij}

n Observation likelihoods
n Output probability matrix B={bi(k)}

n Special initial probability vector p

€ 

π i = P(q1 = i)    1≤ i ≤ N
€ 

aij = P(qt = j |qt−1 = i)   1≤ i, j ≤ N

€ 

bi(k) = P(Xt = ok |qt = i)   

Hidden Markov Models formally



+ Different types of HMM structure

Thanks to Dan Jurafsky for these slides 

Bakis = left-to-right
(allowing skips)

Ergodic = 
fully-connected



+ HMMs for speech
n Dictionary

SIX S IH K S

n State sequence for every word

n Each phone has 3 subphones

Thanks to Dan Jurafsky for these slides 



+ HMM for digit recognition task

Thanks to Dan Jurafsky for these slides 



+ Back to the Noisy Channel Model

nSearch through space of all possible sentences
n Defined by the HMM

nPick the one that is most probable given the waveform.
n Based on the transition and output probabilities in the HMM
Thanks to Dan Jurafsky for these slides 



+ The Noisy Channel Model
n What is the most likely sentence out of all sentences 

in the language L given some acoustic input O?

n Treat acoustic input O as sequence of individual 
observations 
n O = o1,o2,o3,…,ot

n Define a sentence as a sequence of words:
n W = w1,w2,w3,…,wn

Thanks to Dan Jurafsky for these slides 



+ The Evaluation (forward) problem 
for speech
n The observation sequence O is a series of MFCC 

vectors

n The hidden states W are the phones and words

n For a given phone/word string W, our job is to 
evaluate P(O|W)

n Intuition: how likely is the input to have been 
generated by just that word string W

Thanks to Dan Jurafsky for these slides 



+ HMM for speech: Consider all 
different paths!
n f ay ay ay ay v v v v 

n f f ay ay ay ay v v v 

n f f f f ay ay ay ay v

n f f ay ay ay ay ay ay v

n f f ay ay ay ay ay ay ay ay v

n f f ay v v v v v v v 
Thanks to Dan Jurafsky for these slides 

✐
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342 Handbook of Natural Language Processing

Acoustic modeling of speech typically refers to the process of establishing statistical representations
for the feature vector sequences computed from the speech waveform. HMM (Baum, 1972; Baker, 1975;
Jelinek, 1976) is one of the most common types of acoustic models. Other acoustic models include
segmental models (Poritz, 1988; Deng, 1993; Deng et al., 1994; Ostendorf et al., 1996; Glass, 2003), super-AQ2
segmental models including hidden dynamic models (Deng et al., 2006), neural networks (Lippman,
1987; Morgan et al., 2005), maximum entropy models (Gao and Kuo, 2006), and (hidden) conditional
random fields (Gunawardana et al., 2006).AQ3

Acoustic modeling also encompasses “pronunciation modeling,” which describes how a sequence or
multi-sequences of fundamental speech units (such as phones or phonetic feature) are used to represent
larger speech units such as words or phrases that are the object of speech recognition. Acoustic modeling
may also include the use of feedback information from the recognizer to reshape the feature vectors of
speech in achieving noise robustness in speech recognition.

In speech recognition, statistical properties of sound events are described by the acoustic model.
Correspondingly, the likelihood score p(X|W) in Equation 15.2 is computed based on the acoustic model.
In an isolated-word speech-recognition system that has an N-word vocabulary, assuming that the acoustic
model component corresponding to the ith word Wi isλi, then p(X|Wi) = p(X|λi). In HMM-based speech
recognition, it is assumed that the sequence of observed vectors corresponding to each word is generated
by a Markov chain. As shown in Figure 15.3, an HMM is a finite state machine that changes state once
every time frame, and at each time frame t when a state j is entered, an observation vector xt is generated
from the emitting probability distribution bj(xt). The transition property from state i to state j is specified
by the transition probability aij. Moreover, two special non-emitting states are usually used in an HMM.
They include an entry state, which is reached before the speech vector generation process begins, and an
exit state, which is reached when the generative process terminates. Both states are reached only once.
Since they do not generate any observation, none of them has an emitting probability density.

In the HMM, the transition probability aij is the probability of entering state j given the previous
state i, that is, aij = Pr(s(t) = j|s(t − 1) = i), where s(t) is the state index at time t. For an N-state HMM,
we have,

N∑

j=1
aij = 1.

The emitting probability density bj(x) describes the distribution of the observation vectors at the state j.
In continuous-density HMM (CDHMM), emitting probability density is often represented by a Gaussian
mixture density:

bj(x) =
M∑

m=1
cj,mN(x; µjm, "jm),

where
N(x; µjm, "jm) = 1

(2π)
D
2 |"jm| 1

2
e− 1

2 (x−µjm)T"−1
jm (x−µjm) is a multivariate Gaussian density

D is the dimension of the feature vector x

1 2 3 54
a12 a23 a34 a45

a33a22 a44

FIGURE 15.3 Illustration of a five-state left-to-right HMM. It has two non-emitting states and three emitting states.
For each emitting state, the HMM is only allowed to remain at the same state or move to the next state.

f ay v 



+ The forward lattice for “five”

Thanks to Dan Jurafsky for these slides 

Computes all possible paths



+ Forward trellis for “five”

f 0.8 0.8 0.7 0.4 0.4 0.4 0.5 0.5 0.5 0.5
ay 0.1 0.1 0.3 0.8 0.8 0.8 0.8 0.6 0.5 0.4
v 0.6 0.6 0.4 0.3 0.3 0.3 0.3 0.6 0.8 0.9

p 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.3 0.3
iy 0.1 0.1 0.3 0.6 0.6 0.6 0.5 0.5 0.5 0.4

F AY V
F 0.5 0.5 0.0
AY 0.0 0.5 0.5
V 0.0 0.0 0.5

V 0.0000 0.0000 0.0080 0.0093 0.0114 0.0070 0.0069 0.0036 0.0021 0.0011
AY 0.0000 0.0400 0.0540 0.0664 0.0355 0.0160 0.0051 0.0016 0.0004 0.0001
F 0.8000 0.3200 0.1120 0.0224 0.0045 0.0009 0.0002 0.0001 0.0000 0.0000

1 2 3 4 5 6 7 8 9 10
time

st
a
te
s

“Emission” probabilities (observation likelihood for the observation o at each frame) 

“Transition” probabilities 



+ Viterbi trellis for “five”

Thanks to Dan Jurafsky for these slides 

Computes the most likely path



+ Viterbi trellis for “five”

Thanks to Dan Jurafsky for these slides 

f 0.8 0.8 0.7 0.4 0.4 0.4 0.5 0.5 0.5 0.5
ay 0.1 0.1 0.3 0.8 0.8 0.8 0.8 0.6 0.5 0.4
v 0.6 0.6 0.4 0.3 0.3 0.3 0.3 0.6 0.8 0.9

p 0.4 0.4 0.2 0.1 0.1 0.1 0.1 0.1 0.3 0.3
iy 0.1 0.1 0.3 0.6 0.6 0.6 0.5 0.5 0.5 0.4

F AY V
F 0.5 0.5 0.0
AY 0.0 0.5 0.5
V 0.0 0.0 0.5

V 0.0000 0.064 0.0168 0.00672 0.002688 0.0010752 0.00086016 0.000344064 0.000137626

AY 0.0000 0.04 0.048 0.0448 0.01792 0.007168 0.0028672 0.00086016 0.00021504 6.88128E-05

F 0.8000 0.32 0.112 0.0224 0.00896 0.003584 0.001792 0.0007168 0.00021504 8.6016e-05

1 2 3 4 5 6 7 8 9 10
time

st
a
te
s

“Emission” (observation) probabilities

Transition probabilities

Same  as for the 
forward trellis



+ Viterbi backtrace

Thanks to Dan Jurafsky for these slides 

. . 

.



+ Search space with bigrams

Thanks to Dan Jurafsky for these slides 



+ “Output symbols”:  the great hack
n Markov models are “generative” models:  Find the most 

likely sequence that generates the output symbols

n “Output symbols” = Observations
n What we normally think of as input
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